收藏 分享(赏)

2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx

上传人:a**** 文档编号:636026 上传时间:2025-12-12 格式:DOCX 页数:22 大小:512.87KB
下载 相关 举报
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第1页
第1页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第2页
第2页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第3页
第3页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第4页
第4页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第5页
第5页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第6页
第6页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第7页
第7页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第8页
第8页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第9页
第9页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第10页
第10页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第11页
第11页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第12页
第12页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第13页
第13页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第14页
第14页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第15页
第15页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第16页
第16页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第17页
第17页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第18页
第18页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第19页
第19页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第20页
第20页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第21页
第21页 / 共22页
2022-2023学年人教版八年级数学上册第十三章轴对称专项训练试题(含解析).docx_第22页
第22页 / 共22页
亲,该文档总共22页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版八年级数学上册第十三章轴对称专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列标志中,可以看作是轴对称图形的是( )ABCD2、如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂

2、黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD3、如图,已知是的角平分线,是的垂直平分线,则的长为()A6B5C4D4、2020年初,新冠状病毒引发肺炎疫情,全国多家医院纷纷派医护人员驰援武汉下面是四家医院标志得图案,其中是轴对称图形得是()ABCD5、若点A(1+m,1n)与点B(3,2)关于y轴对称,则m+n的值是()A5B3C3D16、如图所示,线段AC的垂直平分线交线段AB于点D,A50,则BDC()A50B100C120D1307、永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育下列安全图标不是轴

3、对称的是()ABCD8、下列图形中,是轴对称图形的是()ABCD9、等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A或或B或C或D或10、如图所示,已知ABC(ACABBC),用尺规在线段BC上确定一点P,使得PA+PCBC,则符合要求的作图痕迹是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,AC8,BC5,AB的垂直平分线DE交AB于点D,交边AC于点E,则BCE的周长为_2、如图,是内一定点,点,分别在边,上运动,若,则的周长的最小值为_.3、如图,已知等边三角形ABC中,点D,E分别在边AB,BC上,把BDE沿

4、直线DE翻折,使点B落在B处,DB,EB分别交AC于点F,G.若ADF80,则DEG的度数为_4、如图,将一张直角三角形纸片对折,使点B、C重合,折痕为DE,连接DC,若AC=6cm,ACB=90,B=30,则ADC的周长是_cm5、如图,等边三角形ABC的边长为2,D,E是AC,BC上两个动点,且ADCE,AE,BD交于点F,连接CF,则CF长度的最小值为_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABAC,D,E是BC边上的点,连接AD,AE,以ADE的边AE所在直线为对称轴作ADE的轴对称图形ADE,连接DC,若BDCD(1)求证:ABDACD(2)若BAC10

5、0,求DAE的度数2、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DEAB,过点E作EFDE,交BC的延长线于点F(1)求F的度数;(2)若CD=2,求DF的长3、如图,在边长为1个单位长度的小正方形组成的1212网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形ABCD.4、如图,在中,边的垂直平分线分别交,于点.(1)求证:为的中点;(2)若,求的长.5、在ABC中,DE垂直平分AB,分别交AB、BC于点D、E

6、,MN垂直平分AC,分别交AC,BC于点M、N(1)如图1,若BAC112,求EAN的度数;(2)如图2,若BAC82,求EAN的度数;(3)若BAC(90),直接写出用表示EAN大小的代数式-参考答案-一、单选题1、D【解析】【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意故选D【考点】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形

7、两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合2、C【解析】【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质3、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及A=90可求得C=DBC=ABD=30,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90,C+ABD+DBC=90,C=DBC=ABD=30,

8、BD=2AD=6,CD=6,CE =3,故选D【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.4、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:选项B能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是做轴对称图形;选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是做轴对称图形;故选:B【考点】本题考查了轴对称图形的概念,轴对

9、称图形的关键是寻找对称轴,图形两部分折叠后可重合5、D【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得【详解】点A(1+m,1n)与点B(3,2)关于y轴对称,1+m=3,1n=2,解得:m=2,n=1,所以m+n=21=1,故选D【考点】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键6、B【解析】【分析】根据线段垂直平分线的性质得到DADC,根据等腰三角形的性质得到DCAA,根据三角形的外角的性质计算即可【详解】解:DE是线段AC的垂直平分线,DADC,DCAA50,BDCDCA+

10、A100,故选:B【考点】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键7、D【解析】【分析】根据轴对称图形的概念求解【详解】解:A、是轴对称图形,故本选项不合题意; B、是轴对称图形,故本选项不合题意; C、是轴对称图形,故本选项不合题意; D、不是轴对称图形,故本选项符合题意 故选:D【考点】本题考查了轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴8、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图

11、形”判断即可得【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴9、A【解析】【分析】设另一个角是x,表示出一个角是2x-20,然后分x是顶角,2x-20是底角,x是底角,2x-20是顶角,x与2x-20都是底角根据三角形的内角和等于180与等腰三角形两底角相等列出

12、方程求解即可【详解】设另一个角是x,表示出一个角是2x20,x是顶角,2x20是底角时,x+2(2x20)180,解得x44,所以,顶角是44;x是底角,2x20是顶角时,2x+(2x20)180,解得x50,所以,顶角是2502080;x与2x20都是底角时,x2x20,解得x20,所以,顶角是180202140;综上所述,这个等腰三角形的顶角度数是44或80或140故选:A【考点】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错10、C【解析】【分析】根据线段垂直平分线的性质可得,作AB的垂直平分线,交BC于点P,

13、则PB+PC=BC,进而可以判断【详解】解:作AB垂直平分线交BC于点P,连接PA,则PA=PB,所以PA+PC=PB+PC=BC所以符合要求的作图痕迹是C故选:C【考点】本题考查了作图-复杂作图,解决本题的关键是掌握线段垂直平分线的性质二、填空题1、13【解析】【详解】已知DE是AB的垂直平分线,根据线段的垂直平分线的性质得到EA=EB,所以BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:132、3【解析】【分析】如图,作P关于OA,OB的对称点C,D连接OC,OD则当M,N是CD与OA,OB的交点时,PMN的周长最短,最短的值是CD的长根据对称的性质可以证得:

14、COD是等边三角形,据此即可求解【详解】如图,作P关于OA,OB的对称点C,D连接OC,OD则当M,N是CD与OA,OB的交点时,PMN的周长最短,最短的值是CD的长点P关于OA的对称点为C,PM=CM,OP=OC,COA=POA;点P关于OB的对称点为D,PN=DN,OP=OD,DOB=POB,OC=OD=OP=3,COD=COA+POA+POB+DOB=2POA+2POB=2AOB=60,COD是等边三角形,CD=OC=OD=3PMN的周长的最小值=PM+MN+PN=CM+MN+DNCD=3【考点】此题主要考查轴对称-最短路线问题,综合运用了等边三角形的知识正确作出图形,理解PMN周长最小

15、的条件是解题的关键3、70【解析】【详解】解:由折叠的性质得到BDE=BDE,ADF=80,ADF+BDE+BDE=180,BDE=BDE=50,ABC为等边三角形,B=60,则BED=180-(50+60)=70DEG=BED =70,故答案为:704、18【解析】【分析】【详解】解:根据折叠前后角相等可知,B=DCB=30,ADC=ACD=60,AC=AD=DC=6,ADC的周长是18cm故答案为8.5、【解析】【分析】由ADCE,可知点F的路径是一段弧,即当点D运动到AC的中点时,CF长度的最小,即点F为ABC的中心,过B作于,过A点作交于点,则可知,由ABC是等边三角形,BC2,得,进

16、而可知,则CF长度的最小值是【详解】解:ADCE,点F的路径是一段弧,当点D运动到AC的中点时,CF长度的最小,即点F为ABC的中心,过B作于,过A点作交于点,ABC是等边三角形,BC2,CF长度的最小值是故答案为:【考点】本题考查等边三角形的性质,三角形中心的定义,求线段的最小值,解题的关键是能够构造合适的辅助线求解三、解答题1、(1)见解析;(2)【解析】【分析】(1)由对称得到,再证明 即可;(2)由全等三角形的性质,得到,BAC=100,最后根据对称图形的性质解题即可【详解】解:(1)以ADE的边AE所在直线为对称轴作ADE的轴对称图形A,在ABD与中, (2) ,BAC=100,以A

17、DE的边AE所在直线为对称轴作ADE的轴对称图形A,DAE【考点】本题考查全等三角形的判定与性质、轴对称的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键2、(1)30;(2)4【解析】【分析】(1)根据平行线的性质可得EDC=B=60,根据三角形内角和定理即可求解;(2)易证EDC是等边三角形,再根据直角三角形的性质即可求解【详解】(1)ABC是等边三角形,B=60,DEAB,EDC=B=60,EFDE,DEF=90,F=90EDC=30;(2)ACB=60,EDC=60,EDC是等边三角形ED=DC=2,DEF=90,F=30,DF=2DE=4【考点】本题主要考查了运用三角形的内角

18、和算出角度,并能判定等边三角形,会运用含30角的直角三角形的性质3、(1)详见解析;(2)详见解析.【解析】【分析】(1)画出点B关于直线AC的对称点D即可解决问题(2)将四边形ABCD各个点向下平移5个单位即可得到四边形ABCD【详解】(1)点D及四边形ABCD的另两条边如图所示(2)得到的四边形ABCD如图所示【考点】本题考查平移变换、轴对称的性质,解题的关键是理解轴对称的意义,图形的平移实际是点在平移4、(1)详见解析;(2).【解析】【分析】(1)连接CE,根据垂直平分线的性质得到EC=EA,再根据等腰三角形的性质得到EC=EB,进而即可得解;(2)根据含有30角的直角三角形的性质即可

19、得解.【详解】(1)如下图,连接EC,DE是AC的垂直平分线EA=ECEC=EBEB=EA为的中点;(2)DE是AC的垂直平分线,BE=AE.【考点】本题主要考查了垂直平分线的性质及等腰三角形的性质,以及含有30角的直角三角形的性质,熟练掌握相关三角形的性质是解决本题的关键.5、(1)EAN44;(2)EAN16;(3)当090时,EAN1802;当18090时,EAN2180【解析】【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AEBE,再根据等边对等角可得BAEB,同理可得,CANC,然后利用三角形的内角和定理求出B+C,再根据EANBAC(BAE+CAN)代入数据进行计

20、算即可得解;(2)同(1)的思路,最后根据EANBAE+CANBAC代入数据进行计算即可得解;(3)根据前两问的求解方法,分090与18090两种情况解答【详解】解:(1)DE垂直平分AB,AEBE,BAEB,同理可得:CANC,EANBACBAECAN,BAC(B+C),在ABC中,B+C180BAC68,EANBAC(BAE+CAN)1126844;(2)DE垂直平分AB,AEBE,BAEB,同理可得:CANC,EANBAE+CANBAC,(B+C)BAC,在ABC中,B+C180BAC98,EANBAE+CANBAC988216;(3)当090时,DE垂直平分AB,AEBE,BAEB,同理可得:CANC,在ABC中,当18090时,DE垂直平分AB,AEBE,BAEB,同理可得:CANC,在ABC中,所以,当090时,EAN1802;当18090时,EAN2180【考点】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,整体思想的利用是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1