1、人教版九年级数学上册第二十五章概率初步专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一个不透明的盒子中装有30个白、黄两种颜色的乒乓球,这些乒乓球除颜色外都相同 班长进行了多次的摸球试验,发现
2、摸到黄色乒乓球的频率稳定在0.3左右,则盒子中的白色乒乓球的个数可能是()A21个B15个C12个D9个2、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()ABCD3、一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是()A摸出的是白球B摸出的是黑球C摸出的是红球D摸出的是绿球4、小丽准备通过爱心热线捐款,她只记得号码的前 位,后三位由 , 这三个数字组成,但具体顺序忘记了,她第一次就拨对电话的概率是()ABCD5、在利用正六面体骰子进行
3、频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A朝上的点数是5的概率B朝上的点数是奇数的概率C朝上的点数大于2的概率D朝上的点数是3的倍数的概率6、下列事件中,属于不可能事件的是()A某投篮高手投篮一次就进球B打开电视机,正在播放世界杯足球比赛C掷一次骰子,向上的一面出现的点数不大于6D在1个标准大气压下,90 的水会沸腾7、下列命题是真命题的是()A相等的两个角是对顶角B相等的圆周角所对的弧相等C若,则D在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是8、一个不透明的袋中
4、有四张完全相同的卡片,把它们分别标上数字1、2、3、4随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()ABCD9、布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()ABCD10、投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是()Ap一定等于Bp一定不等于C多投一次,p更接近D投掷次数逐步增加,p稳定在附近第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示的两个转盘被分别分成了三个和四个面积相等的扇形,并被涂上相应的颜色,固定指针
5、,自由转动两个转盘,当转盘停止转动后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两个指针所指颜色相同的概率是_2、今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个项目中抽取一项作为考试项目)由抽签的方式决定,具体操作流程:每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组别;再从写有“引体向上”“立定跳远”“800米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是_3、如图,一个小球从A点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H点的概率是_4、如图,是某射手在相同条件下进行射击训练
6、的结果统计图,该射手击中靶心的概率的估计值为_5、某同学投掷一枚硬币,如果连续次都是正面朝上,则他第次抛掷硬币的结果是正面朝上的概率是_三、解答题(5小题,每小题10分,共计50分)1、全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.2、据德阳县志记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事1971年,因破四旧再次遭废现在的
7、钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了名市民,图2中“不太了解”所对应扇形的圆心角是度,分别写出,的值(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查
8、市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率3、如图,是一个竖直放置的钉板,其中,黑色圆面表示钉板上的钉子,分别表示相邻两颗钉子之间的空隙,这些空隙大小均相等,从入口处投放一个直径略小于两颗钉子之间空隙的圆球,圆球下落过程中,总是碰到空隙正下方的钉子,且沿该钉子左右两个相邻空隙继续下落的机会相等,直至圆球落入下面的某个槽内用画树状图的方法,求圆球落入号槽内的概率4、某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据图填写表:平均数中位数众数
9、方差甲班8.58.5_乙班8.5_101.6(2)若规定超过8分为优秀,则从两班优秀的同学中抽取两人参加决赛,求选派的两人中同为乙班的概率5、现有甲、乙两个不透明的袋子,甲袋里装有 2 个红球,1 个黄球;乙袋里装有 1 个红球, 1 个白球这些球除颜色外其余完全相同(1)从甲袋里随机摸出一个球,则摸到红球的概率为_(2)从甲袋里随机摸出一个球,再从乙袋里随机摸出一个球,请用画树状图或列表的方法,求摸出的两个球颜色相同的概率-参考答案-一、单选题1、A【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有白色乒乓球x个,列出方程求解即可
10、【详解】解:设袋中有白色乒乓球x个,由题意得0.3,解得x21故选:A【考点】本题利用了用大量试验得到的频率可以估计事件的概率关键是利用黄球的概率公式列方程求解得到黄球的个数2、C【解析】【分析】利用列表法或树状图即可解决【详解】分别用r、b代表红色帽子、黑色帽子,用R、B、W分别代表红色围巾、黑色围巾、白色围巾,列表如下:RBWrrRrBrWbbRbBbW则所有可能的结果数为6种,其中恰好为红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是故选:C【考点】本题考查了简单事件的概率,常用列表法或画树状图来求解3、A【解析】【分析】个数最多的就是可能性最大的【详解】
11、解:因为白球最多,所以被摸到的可能性最大故选A【考点】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等4、D【解析】【分析】首先根据题意可得:可能的结果有:502,520,052,025,250,205;然后利用概率公式求解即可求得答案【详解】解:她只记得号码的前5位,后三位由5,0,2,这三个数字组成,可能的结果有:502,520,052,025,250,205;他第一次就拨通电话的概率是:故选:D【考点】此题考查了列举法求概率的知识注意概率所求情况数与总情况数之比5、D【解析】【分析】计算出各个选项中
12、事件的概率,根据概率即可作出判断【详解】A、朝上的点数是5的概率为,不符合试验的结果;B、朝上的点数是奇数的概率为,不符合试验的结果;C、朝上的点数大于2的概率,不符合试验的结果;D、朝上的点数是3的倍数的概率是,基本符合试验的结果故选:D【考点】本题考查了频率估计概率,当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率6、D【解析】【分析】不可能事件就是一定不会发生的事件,依据定义即可判断【详解】A、是随机事件,故A选项错误;B、是随机事件,故B选项错误;C、是必然事件,故C选项错误;D、是不可能事件,故D选项正确故选D【考点】本题考查了不可能事件的定义,解题需要正确理解必然事
13、件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件7、D【解析】【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若,则,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是,故D选项正确,符合题意;故选
14、:D【考点】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键8、C【解析】【详解】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C【考点】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比 9、C【解析】【详解】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,P(一红一黄)=故选:C10、
15、D【解析】【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果【详解】投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在附近故选:D【考点】考查利用频率估计概率,大量反复试验下频率稳定值即概率注意随机事件可能发生,也可能不发生二、填空题1、【解析】【分析】根据题意画出列表可得所有等可能的结果,进而可得两个指针指向区域的颜色相同的概率【详解】列举出所有可能的结果转盘2转盘1红1黄红2蓝红(红1,红)(黄,红)(红2,红)(蓝,红)黄(红1,黄)(黄,黄)(红2,黄)(蓝,黄)蓝(红1,蓝)(黄,蓝)(红2,蓝)(蓝,蓝)共有12
16、种等可能的结果,其中颜色相同的有4种结果,颜色相同的概率故答案为【考点】本题考查了列表法与树状图,解决本题的关键是掌握概率公式2、 【解析】【详解】试题解析:分别用D,E,F表示“引体向上”立定跳远”“800米”,画树状图得:共有9种等可能的结果,小明抽到A组“引体向上”的概率=.故答案为:点睛:列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比3、【解析】【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B、C、D处都是等可能情况,从而得到在四个出口E、F
17、、G、H也都是等可能情况,然后根据概率的意义列式即可得解【详解】由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E、F、G、H四个,所以,最终从点H落出的概率为故答案为:【考点】本题考查了概率公式,读懂题目信息,得出所给的图形的对称性以及可能性相等是解答本题的关键,用到的知识点为:概率=所求情况数与总情况数之比4、0.600【解析】【详解】观察图象可知,该射手击中靶心的频率维持在0.600左右,所以该射手击中靶心的概率的估计值为0.600.5、【解析】【分析】投掷一枚硬币,可能出现的两种情况:正面朝上或者正面朝下.每次出现的机会相同【详解】第5次掷硬币,出现正面
18、朝上的机会和朝下的机会相同,都为.故答案为:.【考点】本题考查了概率公式,掌握概率等于所求情况数与总情况数之比是解题的关键三、解答题1、(1);(2)【解析】【分析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【详解】解:(1)(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.【考点】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件
19、A或事件B的概率2、 (1)200,7.2(2)3360(3)【解析】【分析】(1)先用“基本了解”的人数除以其所对应的百分比,可得调查的总人数,再求出“非常了解”的人数,进而得到“不太了解”的人数,最后用“不太了解”的人数所占的百分比乘以360,即可求解;(2)用12000乘以“非常了解”的人数所占的百分比,即可求解;(3)根据题意,列出表格,可得一共有20种等可能结果,其中恰好抽到一男一女的有12种,再根据概率公式,即可求解(1)解:根据题意得:人,“非常了解”的人数为人,“不太了解”的人数为人,“不太了解”所对应扇形的圆心角,即;(2)解:“非常了解”的人数有人;(3)解:根据题意,列出
20、表格,如下:男1男2男3女1女2男1男2、男1男3、男1女1、男1女2、男1男2男1、男2男3、男2女1、男2女2、男2男3男1、男3男2、男3女1、男3女2、男3女1男1、女1男2、女1男3、女1女2、女1女2男1、女2男2、女2男3、女2女1、女2一共有20种等可能结果,其中恰好抽到一男一女的有12种,恰好抽到一男一女的概率为【考点】本题主要考查了扇形统计图和条形统计图,用样本估计总体,利用树状图和列表法求概率,明确题意,准确从统计图中获取信息是解题的关键3、【解析】【分析】根据题意画出树状图,共有8种等可能的路径,其中落入号槽内的有3种路径,再由概率公式求解即可.【详解】画树状图得:所以
21、圆球下落过程中共有8种路径,其中落入号槽内的有3种,所以圆球落入号槽内的概率为 .【考点】树状图法求概率的关键在于列举出所有可能的结果,当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法4、 (1)甲班众数为8.5,方差为0.7;乙班的中位数是8(2)选派的两人中同为乙班的概率为【解析】【分析】(1)根据众数的概念求出甲的众数,根据中位数的概念求出乙的中位数,根据方差的计算公式求出甲的方差;(2)根据题意列表或画树状图求解即可(1)甲班中5位同学的成绩分别为8.5,7.5,8,8.5,10,有2位同学的成绩为8.5,则众数为8.5,甲班的同学成绩的方差为:;乙班的
22、5位同学成绩从小到大排序为:7,7.5,8,10,10,排在第3的成绩为8,因此乙班5位同学成绩的中位数是8;故答案为:甲班众数为8.5,方差为0.7;乙班的中位数是8(2)甲班中有3位同学成绩超过8分,乙班中有2位同学成绩超过8分,列表为:根据表格可知,有20种等可能的情况,其中两人中同为乙班的有2种情况,则选派的两人中同为乙班的概率为【考点】本题考查方差、众数、中位数的定义以及列表或画树状图求概率,掌握方差的计算公式、列出表格或画出树状图是解题的关键5、 (1)(2)【解析】【分析】(1)直接由概率公式求解即可;(2)画树状图,共有4种等可能的结果,摸出的两个球颜色相同的结果有2种,再由概率公式求解即可(1)解: 甲袋里装有2个红球,1个黄球,共有3个球,摸到红球的概率为;故答案为:;(2)解:根据题意画图如下:共有6种等可能的结果,摸出的两个球颜色相同的结果有2种,则摸出的两个球颜色相同的概率为【考点】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验用到的知识点为:概率所求情况数与总情况数之比