1、人教版九年级数学上册第二十二章二次函数同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、2019年女排世界杯于9月在日本举行,中国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排
2、精神如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为() A BCD2、如图,在平面直角坐标系中,抛物线yax2+bx+c(a0)与x轴交于点A(1,0),顶点坐标为(1,m),与y轴的交点在(0,4),(0,3)之间(包含端点),下列结论:abc0;4ac-b20;ac0;1a;
3、关于x的方程ax2+bx+c+2m0没有实数根其中正确的结论有()A1个B2个C3个D4个3、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD4、关于二次函数,下列说法正确的是()A图象的对称轴在轴的右侧B图象与轴的交点坐标为C图象与轴的交点坐标为和D的最小值为95、已知抛物线yax2+bx+c(a0)如图所示,那么a、b、c的取值范围是()Aa0、b0、c0Ba0、b0、c0Ca0、b0、c0Da0、b0、c06、二次函数的图象与一次函数在同一平面直角坐标系中的图象可能是()ABCD7、根据下列表格的对应值:x6.17
4、6.186.196.20ax2bxc0.020.010.010.04判断方程ax2bxc0(a0,a,b,c为常数)一个解x的取值范围是()A6x6.17B6.17x6.18C6.18x6.19D6.19x6.208、抛物线经过,对称轴直线,关于的方程在的范围有实数根,则的范围()ABCD9、二次函数yax2bxc的图象过点(1,0),对称轴为直线x2,若a0,则下列结论错误的是()A当x2时,y随着x的增大而增大B(ac)2b2C若A(x1,m)、B(x2,m)是抛物线上的两点,当xx1x2时,ycD若方程a(x1)(5x)1的两根为x1、x2,且x1x2,则1x15x210、已知二次函数y
5、ax24ax+3与x轴交于A、B两点,与y轴交于点C,若SABC3,则a()ABC1D1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、请写出一个开口向下,并且与轴交于点的抛物线的解析式_2、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:c=3;2a+b=0;8a-b+c0;方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_(填序号)3、二次函数的图象开口向下,则m_4、抛物线yax2+bx+c(a0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为x1,则当y0时,x的取值范围是_
6、5、如果抛物线的最高点是坐标轴的原点,那么的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、根据下列条件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);2、某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利
7、润是多少?3、在平面直角坐标系中,已知点,直线经过点抛物线恰好经过三点中的两点判断点是否在直线上并说明理由;求的值;平移抛物线,使其顶点仍在直线上,求平移后所得抛物线与轴交点纵坐标的最大值4、某超市经销一种商品,每件成本为50元经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件设该商品每件的销售价为x元,每个月的销售量为y件(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?5、小明和小丽先后从A地出发同一直道去B地, 设小丽出发第时, 小丽、小明离B地的距离分别为、,与x
8、之间的数表达式,与x之间的函数表达式是(1)小丽出发时,小明离A地的距离为 (2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?-参考答案-一、单选题1、A【解析】【分析】由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0),设排球运动路线的函数表达式为:y=ax2+bx+c,将点A、B、C的坐标代入得关于a、b、c的三元一次方程组,解得a、b、c的值,则函数解析式可得,从而问题得解【详解】解:由题意可知点A坐标为(-5,0.5),点B坐标为(0,2.5),点C坐标为(2.5,0)设排球运动路线的函数解析式为:y=ax2+bx+c,排球经
9、过A、B、C三点,解得: ,排球运动路线的函数解析式为,故选:A【考点】本题考查了根据实际问题列二次函数关系式并求得关系式,数形结合并明确二次函数的一般式是解题的关键2、C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线yax2+bx+c(a0)的图象开口向上,a0抛物线yax2+bx+c(a0)的对称轴在y轴的右侧, 又抛物线yax2+bx+c(a0)的图象交y轴的负半轴, ,故正确,符合题意;抛物线yax2+bx+c(a0)的图象与x轴有两个交点,即,故错误,不符
10、合题意;抛物线的顶点坐标为(1,m),与x轴的一个交点为A(-1,0)对称轴为x=1抛物线与x轴的另一个交点为(3,0)当x=3时,y=,ac =0,故错误,不符合题意;当x=-1时,y=a-b+c=0,则c=-a+b, 由-4c-3,得-4-a+b-3,图象的对称轴为x=1,故b=-2a,得-4-3a-3,故1a正确,符合题意;y=ax2+bx+c的顶点为(1,m),即当x=1时y有最小值m而y=m-2和y=ax2+bx+c无交点,即方程ax2+bx+c=m-2无解,关于x的方程ax2+bx+c+2-m=0没有实数根,故正确,符合题意故选:C【考点】本题考查的是抛物线与x轴的交点,主要考查函
11、数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征3、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键4、D【解析】【分析】先把抛物线的解析式化成顶点式,再根据二次函数的性质逐个判断即可【详解】抛物线的对称轴为直线:x=-1,在y轴的左侧,故选项
12、A错误;令x=0,则y=-8,所以图象与轴的交点坐标为,故选项B错误;令y=0,则,解得x1=2,x2=-4,图象与轴的交点坐标为和,故选项C错误;,a=10,所以函数有最小值-9,故选项D正确故选:D【考点】本题考查了二次函数的图象、二次函数的性质和二次函数的最值,能熟记二次函数的性质是解此题的关键5、D【解析】【分析】根据开口方向可判断a的符号,根据对称轴可判断b的符号,根据图像与y轴的交点可判断c的符号.【详解】解:由图象开口可知:a0;由图象与y轴交点可知:c0;由对称轴可知:0,b0;a0,b0,c0,故选:D【考点】本题考查二次函数的图像与性质,解题的关键是熟练运用二次函数的图象与
13、性质,本题属于中考常考题型6、A【解析】【分析】先分析二次函数的图像的开口方向即对称轴位置,而一次函数的图像恒过定点,即可得出正确选项【详解】二次函数的对称轴为,一次函数的图像恒过定点,所以一次函数的图像与二次函数的对称轴的交点为,只有A选项符合题意故选A【考点】本题考查了二次函数的图像与性质、一次函数的图像与性质,解决本题的关键是能推出一次函数的图像恒过定点,本题蕴含了数形结合的思想方法等7、C【解析】【分析】根据在6.18和6.19之间有一个值能使ax2+bx+c的值为0,于是可判断方程ax2+bx+c=0一个解x的范围【详解】解:由 ,得 时 随 的增大而增大,得 时, ,时, ,的一个
14、解x的取值范围是 ,故选:C【考点】本题考查了估算一元二次方程的近似解,解答此题的关键是利用函数的增减性8、C【解析】【分析】由题意先得出抛物线的解析式,进而利用根的判别式以及二次函数图象的性质进行分析计算即可【详解】解:抛物线经过,将代入可得,对称轴直线,解得,抛物线为,关于的方程在的范围有实数根,解得,且同时满足当,以及当,解得(舍去),或者当,以及当,解得,综上可得的范围为:故选:C【考点】本题考查二次函数与一元二次方程的结合,熟练掌握二次函数图象的性质并运用数形结合思维分析是解题的关键9、D【解析】【分析】根据二次函数的性质即可判断A;根据对称轴得到b4a,经过点(1,0)得到c5a,
15、从而求得a+c4a,即可判断B;由抛物线的对称性得到,结合xx1+x2,即可判断C;利用二次函数与一元二次方程的关系即可判断D【详解】解:二次函数yax2+bx+c中,a0,对称轴为直线x2,当x2时,y随着x的增大而增大,故A正确;2,b4a,二次函数yax2+bx+c的图象过点(1,0),ab+c0,即a+4a+c0,c5a,a+c4a,(a+c)2b2,故B正确;A(x1,m)、B(x2,m)是抛物线上的两点,抛物线对称轴,2xx1+x2,xx1+x2,2xx,x0,此时,yax2+bx+cc,故C正确;抛物线的对称轴为直线x2,图象与x轴交于(1,0),抛物线x轴的另一个交点是(5,0
16、),抛物线与直线y1的交点横坐标x11,x25,如图,方程a(x+1)(x5)1的两根为x1和x2,且x1x2,则1x1x25,故D错误故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,抛物线与x轴的交点,熟练掌握二次函数的性质是解题的关键10、D【解析】【分析】由根与系数的关系求得AB的长度,由抛物线解析式求得点C的坐标,然后根据列出关于的方程,解方程即可【详解】令,则ax24ax+30,x1+x24,x1x2,AB|x1x2|,令x0,y3,OC3,SABCABOC,故选:D【考点】本题考查了二次函数与坐标轴交点的问题,一元二次方程根与系数的关
17、系,熟练掌握一元二次方程跟与系数的关系是解题关键二、填空题1、【解析】【分析】根据二次函数的性质,抛物线开口向下a0,然后写出即可【详解】解:抛物线解析式为(答案不唯一)故答案为:(答案不唯一)【考点】本题考查了二次函数的性质,开放型题目,主要利用了抛物线的开口方向与二次项系数a的关系2、【解析】【分析】由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断;由抛物线的对称轴为直线x=1,即可判断;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断,由抛物线开口向下,得到a0,再由当x=-1时,即可判断【详解】解:二次函数y=ax2+bx+c的部分图象
18、与y轴的交点为(0,3),c=3,故正确;抛物线的对称轴为直线x=1,即,故正确;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,抛物线与x轴的另一个交点在2到3之间,故正确;抛物线开口向下,a0,当x=-1时,即,故错误,故答案为:【考点】本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质3、【解析】【分析】根据二次函数的图象开口向下可得,求解即可【详解】解:二次函数的图象开口向下,解得:,故答案为:【考点】本题考查了二次函数图像与系数的关系,熟知一元二次方程,开口向上;,开口向下是解本题的关键4、3x1【解析】【分析】根据抛物线与x轴的一个交点坐
19、标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y0时,x的取值范围【详解】解:抛物线yax2+bx+c(a0)与x轴的一个交点为(3,0),对称轴为x1,抛物线与x轴的另一个交点为(1,0),由图象可知,当y0时,x的取值范围是3x1故答案为:3x1【考点】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键5、【解析】【分析】根据函数图像有最高点可得出开口向下,即可得出答案;【详解】抛物线的最高点是坐标轴的原点,抛物线开口向下,m+10,故答案是【考点】本题主要考查了根据二次函数的开口方向求参数,准确分析判断是解题的关键三、解答题1、(
20、1)y4x27x+1;(2)y2(x2)2+3【解析】【分析】(1)先设出抛物线的解析式为yax2+bx+c,再将点(0,1),(1,2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式ya(x2)23,然后把(3,1)代入求出a的值即可【详解】解:(1)设出抛物线的解析式为yax2+bx+c,将(0,1),(1,2),(2,3)代入解析式,得:,解得:,抛物线解析式为:y4x27x+1;(2)设抛物线解析式为ya(x2)2+3,把(3,1)代入得:a(32)2+31,解得a2,所以抛物线解析式为y2(x2)2+3【考点】本题考查了待定系数法求二次
21、函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解2、(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元【解析】【分析】(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意列出方程,解方程即可得出结论;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值【详解】解:(1)设甲种商品每箱盈利
22、x元,则乙种商品每箱盈利(x-5)元,根据题意得: ,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),经检验,x=15是原分式方程的解,符合实际,x-5=15-5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,a=-20,当a=5时,函数有最大值,最大值是2000元,答:当降价5元时,该商场利润最大,最大利润是2000元【考点】本题考查了分式方程及二次函数的应用,解题的关键是理解题意,找出等
23、量关系,准确列出分式方程及函数关系式3、(1)点在直线上,理由见详解;(2)a=-1,b=2;(3)【解析】【分析】(1)先将A代入,求出直线解析式,然后将将B代入看式子能否成立即可;(2)先跟抛物线与直线AB都经过(0,1)点,且B,C两点的横坐标相同,判断出抛物线只能经过A,C两点,然后将A,C两点坐标代入得出关于a,b的二元一次方程组;(3)设平移后所得抛物线的对应表达式为y=-(x-h)2+k,根据顶点在直线上,得出k=h+1,令x=0,得到平移后抛物线与y轴交点的纵坐标为-h2+h+1,在将式子配方即可求出最大值【详解】(1)点在直线上,理由如下:将A(1,2)代入得,解得m=1,直
24、线解析式为,将B(2,3)代入,式子成立,点在直线上;(2)抛物线与直线AB都经过(0,1)点,且B,C两点的横坐标相同,抛物线只能经过A,C两点,将A,C两点坐标代入得,解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h)2+k,顶点在直线上,k=h+1,令x=0,得到平移后抛物线与y轴交点的纵坐标为-h2+h+1,-h2+h+1=-(h-)2+,当h=时,此抛物线与轴交点的纵坐标取得最大值【考点】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键4、(1)y-10x+900;(2)每件销售价为70元时,
25、获得最大利润;最大利润为4000元【解析】【分析】(1)根据等量关系“利润(售价进价)销量”列出函数表达式即可(2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值【详解】解:(1)根据题意,y30010(x60)=-10x+900,y与x的函数表达式为:y-10x+900;(2)设利润为w,由(1)知:w(x50)(-10x+900)=10x21400x45000,w10(x70)24000,每件销售价为70元时,获得最大利润;最大利润为4000元【考点】本题考查的是二次函数在实际生活中的应用此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式5、(1)250;(2)当小丽出发第时,两人相距最近,最近距离是【解析】【分析】(1)由x=0时,根据-求得结果即可;(2)求出两人相距的函数表达式,求出最小值即可【详解】解(1)当x=0时,=2250,=2000-=2250-2000=250(m)故答案为:250(2)设小丽出发第时,两人相距,则即其中因此,当时S有最小值,也就是说,当小丽出发第时,两人相距最近,最近距离是【考点】此题主要考查了二次函数的性质的应用,熟练掌握二次函数的性质是解答本题的关键