1、九年级数学上册第二十一章一元二次方程专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一元二次方程的解是A,B,C,D,2、关于x的一元二次方程x24x+3=0的解为()Ax1=1,x2=3Bx1=
2、1,x2=3Cx1=1,x2=3Dx1=1,x2=33、若一元二次方程的两根为,则的值是()A4B2C1D24、已知关于x的一元二次方程x2+2x+m2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A6B5C4D35、已知关于x的一元二次方程有两个不相等的实数根x1,x2若,则m的值是()A2B1C2或1D不存在6、定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数) 是关于x的方程,则它的根的情况是()A有一个实根B有两个不相等的实数根C有两个相等的实数根D没有实数根7、九章算术“勾股”章有一题:“今有户高
3、多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈10尺,1尺10寸)?若设门的宽为x寸,则下列方程中,符合题意的是()Ax2+12(x+0.68)2Bx2+(x+0.68)212Cx2+1002(x+68)2Dx2+(x+68)210028、已知关于x的一元二次方程(m1)x22x10有实数根,则m的取值范围是()Am2Bm2Cm2且m1Dm2且m19、若|x24x+4|与互为相反数,则x+y的值为()A3B4C6D910、方程的解是()A2或0B2或0C2D2或0第卷(非选择题 70分)二、填空题(5
4、小题,每小题4分,共计20分)1、一元二次方程的两根为,则_2、如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解周髀算经时给出的,人们称它为“赵爽弦图”在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为,空白部分的面积为,大正方形的边长为,小正方形的边长为,若,则的值为_3、关于x的方程有两个实数根且则_4、已知(m1)3x50是一元二次方程,则m_5、已知关于x的一元二次方程(a3)x24x+30有实数根,则a的值为_三、解答题(5小题,每小题10分,共计50分)1、解方程:2、解下列方程:(1)x26x+81;(2)2x24x303、已知
5、关于x的方程有两实数根(1)求k的取值范围;(2)设方程两实数根分别为、,且,求实数k的值4、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.5、某旅游园区对团队入园购票规定:如团队人数不超过人,那么这个团队需交200元入园费;若团队人数超过人,则这个团队除了需交200元入园费外,超过部分游客还要按每人元交入园费,下表是两个旅游团队人数和入园缴费情况:旅游团队名称团队人数(人)入园费用(元)旅游团队180350旅游团队245200根据上表的数据,求某旅游园区对团队入园购票规定的人是多少?-参考答案-一、单选题1、A【解析】【分析】先把方程化为一般
6、式, 然后利用因式分解法解方程 【详解】解:,或,所以,故选【考点】本题考查了解一元二次方程-因式分解法: 就是先把方程的右边化为 0 ,再把左边通过因式分解化为两个一次因式的积的形式, 那么这两个因式的值就都有可能为 0 ,这就能得到两个一元一次方程的解, 这样也就把原方程进行了降次, 把解一元二次方程转化为解一元一次方程的问题了(数学转化思想) 2、C【解析】【分析】利用因式分解法求出已知方程的解【详解】x2-4x+3=0,分解因式得:(x-1)(x-3)=0,解得:x1=1,x2=3,故选C【考点】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一
7、次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)3、A【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】根据题意得,所以故选A【考点】此题主要考查根与系数的关系,解题的关键是熟知根与系数的性质.4、B【解析】【分析】根据一元二次方程根的判别式和一元二次方程的解法结合已知条件进行分析解答即可.【详解】关于x的一元二次方程x2+2x+m2=0有两个实数根,=,解得:,又m为正整数,m=1或2或3,(1)当m=1时,原方程为x2+2x-1=0,此时方程的两根均不为
8、整数,故m=1不符合要求;(2)当m=2时,原方程为x2+2x=0,此时方程的两根分别为0和-2,符合题中要求;(3)当m=3时,原方程为x2+2x+1=0,此时方程的两根都为1,符合题中要求; m=2或m=3符合题意,m的所有符合题意的正整数取值的和为:2+3=5.故选B.【考点】读懂题意,熟知“在一元二次方程中,若方程有两个实数根,则=”是解答本题的关键.5、A【解析】【分析】先由二次项系数非零及根的判别式,得出关于m的不等式组,解之得出m的取值范围,再根据根与系数的关系可得出,结合,即可求出m的值【详解】解:关于x的一元二次方程mx2(m+2)x+=0有两个不相等的实数根x1、x2,解得
9、:m1且m0,x1、x2是方程mx2(m+2)x+=0的两个实数根,m=2或1,m1,m=2故选:A【考点】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式,找出关于m的不等式组;(2)牢记,6、B【解析】【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,可得,即可得出答案.【详解】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.【考点】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一
10、元二次方程要尤其注意各项系数的符号.7、D【解析】【分析】1丈100寸,6尺8寸68寸,设门的宽为x寸,则门的高度为(x+68)寸,利用勾股定理及门的对角线长1丈(100寸),即可得出关于x的一元二次方程,此题得解.【详解】解:1丈100寸,6尺8寸68寸.设门的宽为x寸,则门的高度为(x+68)寸,依题意得:x2+(x+68)21002.故选:D.【考点】本题主要考查了勾股定理的应用、由实际问题抽象出一元二次方程,准确计算是解题的关键8、D【解析】【分析】根据二次项系数非零及根的判别式0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【详解】解:因为关于x的一元二次方程x22xm
11、0有实数根,所以b24ac224(m1)10,解得m2又因为(m1)x22x10是一元二次方程,所以m10综合知,m的取值范围是m2且m1,因此本题选D【考点】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式0,找出关于m的一元一次不等式组是解题的关键9、A【解析】【详解】根据题意得:|x24x+4|+=0,所以|x24x+4|=0,=0,即(x2)2=0,2xy3=0,所以x=2,y=1,所以x+y=3故选A10、B【解析】【分析】首先提公因式,再根据平方差公式分解因式,即可得出结论【详解】解:,或或,故选:B【考点】本题考查了高次方程,运用类比思想将高次方程转化为
12、二次方程或一次方程是解题的关键二、填空题1、【解析】【分析】根据根与系数的关系表示出和即可;【详解】,=,=故答案为【考点】本题主要考查了一元二次方程根与系数的关系,准确利用知识点化简是解题的关键2、【解析】【分析】如图(见解析),设,先根据直角三角形的面积公式、正方形的面积公式求出的值,再根据建立等式,然后根据建立等式求出a的值,最后代入求解即可【详解】如图,由题意得:,是直角三角形,且均为正数则大正方形的面积为小正方形的面积为设则又,即解得或(不符题意,舍去)将代入得:两边同除以得:令则解得或(不符题意,舍去)即的值为故答案为:【考点】本题考查了一元二次方程与几何图形、勾股定理、三角形全等
13、的性质等知识点,理解题意,正确求出的值是解题关键3、3【解析】【分析】先根据一元二次方程的根与系数的关系可得,再根据可得一个关于的方程,解方程即可得的值【详解】解:由题意得:,化成整式方程为,解得或,经检验,是所列分式方程的增根,是所列分式方程的根,故答案为:3【考点】本题考查了一元二次方程的根与系数的关系、解分式方程,熟练掌握一元二次方程的根与系数的关系是解题关键4、1【解析】【分析】根据一元二次方程的定义m-10,且,解答即可【详解】(m1)3x50是一元二次方程,m-10,且,m-10,且,故答案为:-1【考点】本题考查了一元二次方程的定义即含有一个未知数且含未知数项的次数最高是2的整式
14、方程,熟练掌握定义是解题的关键5、且【解析】【分析】由根的判别式和一元二次方程的定义求出的取值范围即可得出答案【详解】解:关于的一元二次方程有实数根,且,解得,故答案为:且【考点】本题考查了一元二次方程根的情况与根的判别式的关系:解题的关键是掌握(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根;也考查了一元二次方程的解法三、解答题1、,【解析】【分析】先去括号、整理,将方程变形为一般形式,再求出,代入求根公式即可解答【详解】解:整理得:,【考点】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型2、(1)x1x23;(2)x1,x2
15、【解析】【分析】(1)先移项,合并后根据完全平方公式进行变形,再开方,即可得出一元一次方程,求出方程的解即可;(2)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解即可【详解】解:(1)x26x+81,x26x+8+10,x26x+90,(x3)20,x30,x1x23;(2)2x24x30,2x24x3,x22x,x22x+1+1,(x1)2,开方得:x1,x1,x2【考点】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键3、(1)k3;(2)【解析】【分析】(1)根据方程有两个实数根得出0,解之可得(2)利用根与系数的关系可用k表示出x1x2和x1
16、x2的值,根据条件可得到关于k的方程,可求得k的值,注意利用根的判别式进行取舍【详解】解:(1)关于x的一元二次方程有两个实数根,0,即0,解得:k3,故k的取值范围为:k3(2)由根与系数的关系可得,由可得,代入x1x2和x1x2的值,可得:解得:,(舍去),经检验,是原方程的根,故【考点】本题考查了一元二次方程ax2bxc0(a0,a,b,c为常数)根的判别式当0,方程有两个不相等的实数根;当0,方程有两个相等的实数根;当0,方程没有实数根以及根与系数的关系,也考查了解一元二次方程和分式方程,注意分式方程要验根4、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得
17、出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程5、50【解析】【分析】先根据旅游团队1的入园费用等于200元入园费超出的部分的费用列出方程,解得,再根据旅游团队2的数据可知a45,由此可求得a的值【详解】解:由题意可得:,解得,由旅游团队2的数据可知a45,a=50,答:某旅游园区对团队入园购票规定的人是50人【考点】本题考查了一元二次方程的应用,理解题意,根据旅游团队1的入园费用等于200元入园费超出的部分的费用列出方程是解决本题的关键