1、人教版七年级数学上册第二章整式的加减综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式:mn,m,8,x2+2x+6,y35y+中,整式有()A3个B4个C6个D7个2、与的5倍的差()AB
2、CD3、已知是关于,的单项式,且这个单项式的次数为5,则该单项式是()ABCD4、减去等于的多项式是()ABCD5、设x,y,c是实数,正确的是()A若xy,则xcycB若xy,则xcycC若xy,则D若,则2x3y6、如果一个多项式的各项的次数都相同,那么这个多项式叫做齐次多项式如:x3+3xy2+4xz2+2y3 是 3 次齐次多项式,若 ax+3b26ab3c2 是齐次多项式,则 x 的值为()A-1B0C1D27、如果2x2yn与5xm1y的和是单项式,那么m,n的值分别是Am=2,n=1Bm=1,n=2Cm=3,n=1Dm=3,n=28、下列各式中,与为同类项的是()ABCD9、下列
3、计算正确的是()A3a2b5abB5a22a23C7aa7a2D2a2b4a2b2a2b10、某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:,空格的地方被墨水弄脏了,请问空格中的一项是( )A+2abB+3abC+4abD-ab第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、三个连续偶数,中间一个数为,则这三个数的积为_2、围棋是一种起源于中国的棋类游戏,在春秋战国时期即有记载,围棋棋盘由横纵各19条等距线段构成,围棋的棋子分黑白两色,下在横纵线段的交叉点上若一个白子周围所有相邻(有线段连接)的
4、位置都有黑子,白子就被黑子围住了如图1,围住1个白子需要4个黑子,固住2个白子需要6个黑子,如图2,围住3个白子需要8个或7个黑子,像这样,不借助棋盘边界,只用15个黑子最多可以围住_个白子3、已如,则_4、已知多项式x|m|+(m2)x10是二次三项式,m为常数,则m的值为_5、单项式的系数是_,次数是_三、解答题(5小题,每小题10分,共计50分)1、为了响应“阳光体育运动”,学校大力开展各项体育项目,现某中学体育队准备购买100个足球和x个篮球作为训练器材现已知有A、B两个供应商给出标价如下:足球每个200元,篮球每个80元;供应商A的优惠方案:每买一个足球就赠送一个篮球;供应商B的优惠
5、方案:足球、篮球均按定价的80%付款(1)若,请计算哪种方案划算?(2),请用含x的代数式,分别把两种方案的费用表示出来2、如图,数轴上的三个点A,B,C分别表示实数a,b,c(1)如果点C是的中点,那么a,b,c之间的数量关系是_;(2)比较与的大小,并说明理由;(3)化简:3、如图,将连续的奇数1,3,5,7按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示(1)若x=17,则a+b+c+d= (2)移动十字框,用x表示a+b+c+d= (3)设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由4、计算:(1);(2)
6、5、用代数式表示:(1)比x的平方的5倍少2的数;(2)x的相反数与y的倒数的和;(3)x与y的差的平方;(4)某商品的原价是a元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x表示十位上的数字,用代数式表示这个三位数-参考答案-一、单选题1、C【解析】【分析】根据整式的定义,结合题意即可得出答案【详解】解:在mn,m,8,x2+2x+6,y35y+中,整式有mn,m,8, x2+2x+6,一共6个故选:C【考点】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,
7、但在整式中除式不能含有字母单项式和多项式统称为整式2、C【解析】【分析】先根据题意列出代数式,然后去括号,合并同类项,即可求解【详解】解:根据题意得: 故选:C【考点】本题主要考查了列代数式,整式的加减运算,明确题意,准确列出代数式是解题的关键3、C【解析】【分析】先根据单项式的次数计算出m的值即可【详解】解:已知 mx2ym+1 是关于 x , y 的单项式,且的次数为5,即该单项式为故选:C【点评】本题考查了单项式的系数、次数的概念;正确理解单项式的系数和次数是解决问题的关键4、A【解析】【分析】由减法的意义可得被减数等于差加上减数,列式计算即可得到答案.【详解】解:减去等于的多项式是 故
8、选:【考点】本题考查的是减法的意义,整式的加减运算,掌握合并同类项是解题的关键.5、B【解析】【分析】根据等式的性质逐项分析即可【详解】解:A、若,则,故该选项不正确,不符合题意;B、若,则,故该选项正确,符合题意;C、若,且,则,故该选项不正确,不符合题意;D、若,则,故该选项不正确,不符合题意;故选:B【考点】本题考查了等式的性质,熟练掌握等式的性质是解题的关键等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等6、C【解析】【分析】根据齐次多项式的定义一个多项式的各项的次数都相同,得出关于m的方程,
9、解方程即可求出x的值.【详解】由题意,得,解得.所以C选项是正确的.【考点】本题考查了学生的阅读能力与知识的迁移能力.正确理解齐次多项式与单项式的次数的定义是解题的关键.7、C【解析】【分析】两个单项式的和为单项式,则这两个单项式是同类项,再根据同类项的定义列出关于m,n的方程组,即可求出m,n的值.【详解】2x2yn与5xm1y的和是单项式,则2x2yn与5xm1y是同类项, 解得:m=3,n=1故选C.【考点】考查同类项的概念,掌握两个单项式的和为单项式,则这两个单项式是同类项是解题的关键.8、A【解析】【分析】含有相同字母,并且相同字母的指数相同的单项式为同类项,据此分析即可【详解】与是
10、同类项的特点为含有字母,且对应的指数为2,的指数为1,只有A选项符合;故选A【考点】本题考查了同类项的概念,掌握同类项的概念是解题的关键9、D【解析】【分析】直接利用合并同类项法则分别分析得出答案【详解】A、3a+2b,无法计算,故此选项错误;B、5a2-2a2=3a2,故此选项错误;C、7a+a=8a,故此选项错误;D、2a2b-4a2b=-2a2b,正确故选D【考点】此题主要考查了合并同类项,正确掌握运算法则是解题关键10、A【解析】【分析】将等式右边的已知项移到左边,再去括号,合并同类项即可【详解】解:依题意,空格中的一项是:(2a2+3ab-b2)-(-3a2+ab+5b2)-(5a2
11、-6b2)=2a2+3ab-b2+3a2-ab-5b2-5a2+6b2=2ab故选A【考点】本题考查了整式的加减运算,熟练掌握移项的知识,同时熟记去括号法则,熟练运用合并同类项的法则解题的关键二、填空题1、#【解析】【分析】根据连续偶数之间的差值为2可求【详解】三个连续偶数,中间一个数为前一个偶数为:,后一个偶数为:三个数的积为:故答案为:【考点】本题考查了平方差公式、单项式乘多项式等,解题的关键在于用n表示出三个偶数2、21【解析】【分析】根据题意可得到黑子的个数为4=41,最多可以围住白子的个数为1=212-21+1,黑子的个数为6=42-2,最多可以围住白子的个数为2=222-42+2;
12、黑子的个数为7=42-1,最多可以围住白子的个数为3=222-32+1;黑子的个数为8=42,最多可以围住白子的个数为5=222-22+1;黑子的个数为9=43-3,最多可以围住白子的个数为6=232-53+3,由此可设黑子的个数为4n-x,其中0x3,得到当x=0时,最多可以围住白子的个数为2n2-2n+1;当x=1时,最多可以围住白子的个数为2n2-3n+1;当x=2时,最多可以围住白子的个数为2n2-4n+2;当x=3时,最多可以围住白子的个数为2n2-5n+3即可求解【详解】解:根据题意得:黑子的个数为4=41,最多可以围住白子的个数为1=212-21+1,黑子的个数为6=42-2,最
13、多可以围住白子的个数为2=222-42+2,黑子的个数为7=42-1,最多可以围住白子的个数为3=222-32+1,黑子的个数为8=42,最多可以围住白子的个数为5=222-22+1,黑子的个数为9=43-3,最多可以围住白子的个数为6=232-53+3,可设黑子的个数为4n-x,其中0x3,当x=0时,最多可以围住白子的个数为2n2-2n+1;当x=1时,最多可以围住白子的个数为2n2-3n+1;当x=2时,最多可以围住白子的个数为2n2-4n+2;当x=3时,最多可以围住白子的个数为2n2-5n+3;当黑子的个数为15=44-1时,最多可以围住白子的个数为242-34+1=21个故答案为:
14、21【考点】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键3、【解析】【分析】先把两式相加求解 再求解的相反数即可得到答案.【详解】解: 两式相加可得: 故答案为:【考点】本题考查的是整式的加减运算,相反数的含义,掌握去括号的法则与合并同类项的法则是解题的关键.4、-2【解析】【详解】因为多项式x|m|(m2)x10是二次三项式,可得:m20,|m|=2,解得:m=2,故答案为:25、 5【解析】【分析】根据单项式的系数和次数的概念进行判断,即可得出结论【详解】解:单项式的系数是:,次数是:2+3=5故答案为:,5【考点】此题考查了单项式的系数和次数,掌握单项式的相关概念并能准
15、确理解其含义是解题的关键三、解答题1、 (1)供应商A的优惠方案划算(2)供应商A:(80x+12000)元,供应商B:(64x+16000)元【解析】【分析】(1)根据供应商A和B的优惠方案,求出各自的费用,比较即可得到结果;(2)用含x的代数式表示出两种方案的费用即可(1)解:当x=100时,供应商A的优惠方案为:(元)供应商B的优惠方案为:(元) 供应商A的优惠方案划算;(2)解:当时,供应商A的优惠方案为:(元)供应商B的优惠方案:(元) 【考点】此题考查了列代数式及方案问题,弄清题意是解本题的关键2、 (1)2c=a+b(答案不唯一)(2);理由见解析(3)【解析】【分析】(1)利用
16、C是的中点得到AC=BC,可得,化简即可;(2)通过数轴得出a,b,c的大小关小,从而得出b-4和c+1的大小;(3)先判断a-2,b+1,c的正负,然后根据绝对值的性质化简即可(1)C是的中点,且数轴上的三个点A,B,C分别表示实数a,b,c,AC=BC,2c=a+b,故答案是:2c=a+b;(2),理由如下:由数轴知:,b-40,;(3)由数轴知:,a-20,b+10,【考点】本题考查了数轴的意义,绝对值以及有理数大小的比较,掌握绝对值的性质以及有理数的加减法则是解题的关键3、(1)68(2)4x(3)M的值不能等于2020【解析】【分析】(1)直接求和;(2)a+b+c+d=(x12)+
17、(x2)+(x+2)+(x+12),化简即可;(3)令M=2020,则4x+x=2020,求出x,若x是奇数就说明成立,否则就不能为2020.【详解】观察图1,可知:a=x12,b=x2,c=x+2,d=x+12(1)当x=17时,a=5,b=15,c=19,d=29,a+b+c+d=5+15+19+29=68故答案为68(2)a=x12,b=x2,c=x+2,d=x+12,a+b+c+d=(x12)+(x2)+(x+2)+(x+12)=4x故答案为4x(3)M的值不能等于2020,理由如下:令M=2020,则4x+x=2020,解得:x=404404是偶数不是奇数,与题目x为奇数的要求矛盾,
18、M不能为2020【考点】本题考核知识点:观察总结规律. 解题关键点:用式子表示规律.4、(1);(2)【解析】【分析】(1)先去括号,再合并同类项即可(2)先去括号,再合并同类项即可【详解】(1)(2)【考点】本题考查整式的加减混合运算掌握整式的加减混合运算法则是解答本题的关键5、 (1)5x2-2;(2)-x+;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4)【解析】【分析】(1)明确是x的平方的5倍与2的差;(2)先求出x的相反数与y的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数【详解】(1)5x2-2;(2)-x+;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4) 【考点】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握