收藏 分享(赏)

2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx

上传人:a**** 文档编号:635093 上传时间:2025-12-12 格式:DOCX 页数:18 大小:211.46KB
下载 相关 举报
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第1页
第1页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第2页
第2页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第3页
第3页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第4页
第4页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第5页
第5页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第6页
第6页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第7页
第7页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第8页
第8页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第9页
第9页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第10页
第10页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第11页
第11页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第12页
第12页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第13页
第13页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第14页
第14页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第15页
第15页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第16页
第16页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第17页
第17页 / 共18页
2022-2023学年人教版七年级数学上册第二章整式的加减专题测试试题.docx_第18页
第18页 / 共18页
亲,该文档总共18页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版七年级数学上册第二章整式的加减专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用正方形按如图所示的规律拼图案,其中第个图案中有5个正方形,第个图案中有9个正方形,第个图案中有13个正方形,第

2、个图案中有17个正方形,此规律排列下去,则第个图案中正方形的个数为()A32B34C37D412、甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A商贩A的单价大于商贩B的单价B商贩A的单价等于商贩B的单价C商版A的单价小于商贩B的单价D赔钱与商贩A、商贩B的单价无关3、已知与的和是单项式,则等于()AB10C12D154、下列说法正确的是()A的项是,5B与都是多项式C多项式的次数是3D一个多项式的次数是6,则这个多项式中只有一项的次数是65、已知

3、是关于,的单项式,且这个单项式的次数为5,则该单项式是()ABCD6、下列计算的结果中正确的是()A6a22a24Ba+2b3abC2xy32y3x0D3y2+2y25y47、代数式3x2y-4x3y2-5xy3-1按x的升幂排列,正确的是()A-4x3y2+3x2y-5xy3-1B-5xy3+3x2y-4x3y2-1C-1+3x2y-4x3y2-5xy3D-1-5xy3+3x2y-4x3y28、用代数式表示:a的2倍与3 的和.下列表示正确的是()A2a-3B2a+3C2(a-3)D2(a+3)9、关于整式的说法,正确的是()A系数是5,次数是B系数是,次数是C系数是,次数是D系数是,次数是

4、10、在0,1,x,3x,中,是单项式的有()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一件商品的进价为a元,超市标价b元出售,后因季节原因超市将此商品打八折促销,如果促销后这件商品还有盈利,那么此时每件商品盈利_元(用含有a、b的代数式表示)2、已知2m3n=4,则代数式m(n4)n(m6)的值为_3、已知,则_4、三个连续偶数,中间一个数为,则这三个数的积为_5、按如图所示的程序计算,若开始输入的x的值为48,我们发现第一次得到的结果为24,第二次得到的结果为12,请你探索第2021次得到的结果为_三、解答题(5小题,每小题10分,

5、共计50分)1、下面各行中的数都是正整数, 观察规律并解答下列问题:(1)数字12的位置在第4行,从左往右数第5个数,可以表示成(4,5),那么(5,6)表示的数是 (2)第n行有 个数(用含n的代数式表示)(3)数字2022排在第几行?从左往右数第几个数?请简要说明理由2、化简:(1)4xy(3x23xy)2y+2x2(2)(a+b)2(2a3b)+3(a2b)3、某商场将进货价为 30 元的台灯以 40 元的销售价售出,平均每月能售出 600 个经市场调研发现,销售价每上涨 1 元,其销售量就将减少10个设每个台灯的销售价上涨a元(1)用含a 的代数式填空:涨价后,每个台灯的销售价为_元;

6、涨价后,商场的台灯平均每月的销售量为_个;(2)如果商场要想销售利润平均每月达到 10000 元,商场经理甲说“在原售价每台 40 元的基础上再上涨40元,可以完成任务”;商场经理乙说“不用涨那么多,在原售价每台 40 元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由4、(1)有一列数1、3、5、7有无数项(无数个数),请观察其规律后写出其中第20项(从左往右数第20个数)是 ,第n项是 ;(2)二算法是数学的一种很重要的方法,用二算法可以得到许多很重要的数学公式请观察下图,用二算法推导出13、135、1357的计算结果,猜测1357(2n1)的计算结果;(3)由(

7、2)推导出2462n的结果5、阅读下列材料,完成相应的任务:三角形数古希腊著名数学家的毕达哥拉斯学派把1,3,6,10,这样的数称为“三角形数”,第n个“三角形数”可表示为:发现:每相邻两个“三角形数”的和有一定的规律如:;(1)第5个“三角形数”与第6个“三角形数”的和为_;(2)第n个“三角形数”与第个“三角形数”的和的规律可用下面等式表示:_+_=_,请补全等式并说明它的正确性-参考答案-一、单选题1、C【解析】【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可

8、【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+41;第3个图中有13个正方形,可以写成:5+4+4=5+42;第4个图中有17个正方形,可以写成:5+4+4+4=5+43;第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:49+1=37故选:C【考点】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键2、A【解析】【分析】设商贩A处西瓜的单价为a,商贩B处西瓜的单价为b,根据题意列出不等式进行求解即可得.【详解】设商贩A处西瓜的单价为a,商贩B处西瓜的单价为b,则甲的利润=总

9、售价总成本=5(3a+2b)=0.5b0.5a,赔钱了说明利润0,0.5b0.5a0,ab,故选A【考点】本题考查了不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.3、B【解析】【分析】由同类项的含义可得:,再求解,再代入代数式求值即可得到答案.【详解】解:因为与的和是单项式,所以它们是同类项,所以,解得所以故选:【考点】本题考查的是同类项的含义,一元一次方程组的解法,代数式的值,掌握同类项的概念是解题的关键.4、B【解析】【分析】根据多项式的项数、次数和多项式定义,即几个单项式的和叫做多项式判断即可;【详解】解:A的项是,5,故错误;B与都是多项式,故正确;C多项式的次数是

10、2,故错误;D一个多项式的次数是6,则这个多项式中不一定只有一项的次数是6,如,故错误故选B【考点】本题主要考查了多项式的定义、项数、次数,准确分析判断是解题的关键5、C【解析】【分析】先根据单项式的次数计算出m的值即可【详解】解:已知 mx2ym+1 是关于 x , y 的单项式,且的次数为5,即该单项式为故选:C【点评】本题考查了单项式的系数、次数的概念;正确理解单项式的系数和次数是解决问题的关键6、C【解析】【分析】直接利用合并同类项法则计算得出答案【详解】A、6a22a24a2,故此选项错误;B、a+2b,无法计算,故此选项错误;C、2xy32y3x0,故此选项正确;D、3y2+2y2

11、5y2,故此选项错误故选:C【考点】本题考查了整式的运算问题,掌握合并同类项法则是解题的关键7、D【解析】【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列【详解】解:3x2y-4x3y2-5xy3-1的项是3x2y、-4x3y2、-5xy3、-1,按x的升幂排列为-1-5xy3+3x2y-4x3y2,故D正确;故选D【考点】考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列要注意,在排列多项式各项时,要保持其原有的符号8、B【解析】【分析】a的2倍与3的和也就是用a乘2再加上3,列出代数式即可【详解】9、B【解析】【分析

12、】的系数是字母前面的数字,次数是整式中所有字母次数之和【详解】,那么系数是,次数是x的1次加上y的n次为:1+n次故选B【考点】本题考查整式的系数和次数,牢记系数是字母前的数字,次数是所有字母次数之和10、D【解析】【分析】利用数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,进而判断得出即可【详解】根据单项式的定义可知,只有代数式0,-1,-x, a,是单项式,一共有4个.故答案选D.【考点】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式.二、填空题1、(0.8ba)【解析】【分析】根据“标价售价”用代数式表示出售价,再根据“售价进价利润

13、”用代数式表示盈利【详解】解:根据题意得,每件商品盈利(0.8ba)元,故答案为:(0.8ba)【考点】考查了列代数式,解题关键是熟记“标价=售价,售价-进价=利润”2、8【解析】【详解】解:2m3n=4,原式=mn4mmn+6n=4m+6n=2(2m3n)=2(4)=8,故答案为:83、2【解析】【分析】将变形为即可计算出答案【详解】故答案为:2【考点】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识4、#【解析】【分析】根据连续偶数之间的差值为2可求【详解】三个连续偶数,中间一个数为前一个偶数为:,后一个偶数为:三个数的积为:故答案为:【考点】本题考查了平方差公式、单项式乘多项式

14、等,解题的关键在于用n表示出三个偶数5、8【解析】【分析】按照程序将每次得到的结果重复输入,寻找结果之间的规律,从而找出2021次时的结果【详解】按照程序,每次得到结果如下:第1次:24第2次:12第3次:6第4次:3第5次:8第6次:4第7次:2第8次:1第9次:6第10次:3第11次:8根据以上结果以可发现,从第3次开始,结果按6、3、8、4、2、1每6个结果为一个周期进行循环,3,到2021次时,结果为循环中第3个数,结果为8,故答案为:8【考点】本题考查了数字类规律探索,根据数据找出规律是解题的关键三、解答题1、 (1)22(2)(3)45行;86个;理由见解析【解析】【分析】(1)根

15、据图中的数据,可以发现数字的变化特点,从而写出(5,6)表示的数;(2)根据图中的数据,可以写出第n行的数字个数;(3)根据前面发现的数字的变化特点,可以写出数字2022排在第几行,从左往右数第几个,并说出理由(1)解:由图中的数据可知,第n行的最大的一个数据是,奇数行的数据从左到右依次增大,偶数行的数据从左到右依次减小,第n行有(2n-1)个数,(5,6)表示数字的位置在第5行,从左往右数第6个数,第4行最大的一个数是,第5行的数据从左往右依次为17,18,19,20,21,22,23,24,25,第5行,从左往右数第6个数是22,即 (5,6)表示的数是22,故答案为:22;(2)解:第1

16、行有1个数,第2行有3个数,第3行有5个数, 第n行有(2n-1)个数,故答案为:(2n-1);(3)解:数字2022排在第45行,从左往右数第86个数理由如下:当为偶数时,该行第一个数为,自左向右减小;当为奇数时,该行最后一个数为,自左向右增大,所以第45行最后一个数(第89个)为2025,数字2022排在第45行,从左往右数第86个数【考点】本题考查数字的变化规律,解答本题的关键是明确题意,发现数字的变化特点,写出相应的数字2、 (1)-x2+7xy-2y;(2)b-3a【解析】【分析】(1)去括号,根据合并同类项法则计算;(2)去括号,根据整式的加减混合运算法则计算(1)解:4xy-(3

17、x2-3xy)-2y+2x2=4xy-3x2+3xy-2y+2x2=-x2+7xy-2y;(2)解:(a+b)-2(2a-3b)+3(-2b)= a+b-4a+6b-6b= b-3a【考点】本题考查的是整式的加减,掌握整式的加减运算法则是解题的关键3、 (1)(40+a),(600-10a)(2)经理甲与乙的说法均正确,理由见解析【解析】【分析】(1)根据进价和售价以及每上涨1元时,其销售量就将减少10个之间的关系,列出代数式即可;(2)根据平均每月能售出600个和销售价每上涨1元时,其销售量就将减少10个之间的关系列出式子,再分两种情况讨论,求出每月的销售利润,再进行比较即可(1)解:涨价后

18、,每个台灯的销售价为40+a(元);涨价后,商场的台灯平均每月的销售量为(600-10a)台;故答案为:(40+a),(600-10a);(2)解:甲与乙的说法均正确,理由如下:涨价后,每个台灯的利润为40+a-30=10+a(元),依题意可得该商场台灯的月销售利润为:(600-10a)(10+a);当a=40时,(600-10a)(10+a)=(600-1040)(10+40)=10000(元);当a=10时,(600-10a)(10+a)=(600-1010)(10+10)=10000(元);故经理甲与乙的说法均正确【考点】此题考查了列代数式,代数式的求值,解决问题的关键是读懂题意,找到所

19、求的量的关系,列出代数式,求出代数式的值4、(1)39; 2n1;(2) n2;(3)n2+n【解析】【分析】(1)由所给的数字可得第n个数为2n1,据此解答即可;(2)对所给的图形进行分析,总结出规律即可;(3)利用(2)的方式进行求解即可【详解】解:(1)一列数1、3、5、7,第n个数为:2n1,第20个数为:220139,故答案为:39,2n1;(2)第(2)图中,分层小正方形的个数是(1+3)个,而整体计算小正方形的个数是22,所以,1+322;第(3)图中,分层小正方形的个数是(1+3+5)个,而整体计算小正方形的个数是32,所以,1+3+532;第(4)图中,分层小正方形的个数是(

20、1+3+5+7)个,而整体计算小正方形的个数是42,所以,1+3+5+742;猜测1+3+5+7+(2n1)n2;(3)2+4+6+8+2n1+1+3+1+5+1+7+1+(2n1)+11+3+5+7+(2n1)+nn2+n【考点】本题主要考查数字的变化规律,解答的关键是由所给的数字分析清楚存在的规律5、 (1)36(2),【解析】【分析】(1)根据第n个“三角形数”可表示为:进行求解即可;(2)根据规律得到等式并化简即可证明(1)解:第5个“三角形数”为:;第6个“三角形数”为:;第5个“三角形数”与第6个“三角形数”的和为:15+21=36,故答案是:36;(2)+=理由:左边右边原等式成立故答案是:,【考点】本题主要考查整式的混合运算的应用,正确理解“三角形数”的概念是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1