收藏 分享(赏)

2021秋六年级数学上册 一 圆 5圆周率的历史(祖冲之算圆周率)拓展资料 北师大版.docx

上传人:a**** 文档编号:627953 上传时间:2025-12-12 格式:DOCX 页数:1 大小:10.57KB
下载 相关 举报
2021秋六年级数学上册 一 圆 5圆周率的历史(祖冲之算圆周率)拓展资料 北师大版.docx_第1页
第1页 / 共1页
亲,该文档总共1页,全部预览完了,如果喜欢就下载吧!
资源描述

1、祖冲之算圆周率祖冲之研究了刘徽的“割圆术”。所谓“割圆术”就是在圆内画个正6边形,其边长正好等于半径,再分12边形,用勾股定理求出每边的长,然后再分24、48边形,一直分下去,所得多边形各边长之和就是圆的周长。祖冲之非常佩服刘徽这个科学方法,但刘徽的圆周率只得到96边,得出3 。14的结果后就没有再算下去,祖冲之决心按刘徽开创的路子继续走下去,一步一步地计算出192边形、384边形以求得更精确的结果。当时,数字运算还没利用纸、笔和数码进行演算,而是通过纵横相间地罗列小竹棍,然后按类似珠算的方法进行计算。祖冲之在房间地板上画了个直径为1丈的大圆,又在里边做了个正6边形,然后摆开他自己做的许多小木

2、棍开始计算起来。此时,祖冲之的儿子祖已13岁了,他也帮着父亲一起工作,两人废寝忘食地计算了十几天才算到96边,结果比刘徽的少0 。000002丈。祖对父亲说:“我们计算得很仔细,一定没错,可能是刘徽错了。”祖冲之却摇摇头说:“要推翻他一定要有科学根据。”于是,父子俩又花了十几天的时间重新计算了一遍,证明刘徽是对的。祖冲之为避免再出误差,以后每一步都至少重复计算两遍,直到结果完全相同才罢休。祖冲之从12288边形,算到24567边形,两者相差仅0 。0000001。祖冲之知道从理论上讲,还可以继续算下去,但实际上无法计算了,只好就此停止,得出圆周率必然大于3 。1415926,而小于3 。1415927。很多朋友知道了祖冲之计算的成绩,纷纷登门向他求教。之后,祖冲之又进一步得出圆周率的密率是355113,约率是227。直到1000多年后,德国数学家鄂图才得出相同的结果。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1