收藏 分享(赏)

2016高考(新课标)数学(理)一轮全程复习构想练习:10-12离散型随机变量的均值与方差、正态分布 .DOC

上传人:高**** 文档编号:620982 上传时间:2024-05-29 格式:DOC 页数:11 大小:591.50KB
下载 相关 举报
2016高考(新课标)数学(理)一轮全程复习构想练习:10-12离散型随机变量的均值与方差、正态分布 .DOC_第1页
第1页 / 共11页
2016高考(新课标)数学(理)一轮全程复习构想练习:10-12离散型随机变量的均值与方差、正态分布 .DOC_第2页
第2页 / 共11页
2016高考(新课标)数学(理)一轮全程复习构想练习:10-12离散型随机变量的均值与方差、正态分布 .DOC_第3页
第3页 / 共11页
2016高考(新课标)数学(理)一轮全程复习构想练习:10-12离散型随机变量的均值与方差、正态分布 .DOC_第4页
第4页 / 共11页
2016高考(新课标)数学(理)一轮全程复习构想练习:10-12离散型随机变量的均值与方差、正态分布 .DOC_第5页
第5页 / 共11页
2016高考(新课标)数学(理)一轮全程复习构想练习:10-12离散型随机变量的均值与方差、正态分布 .DOC_第6页
第6页 / 共11页
2016高考(新课标)数学(理)一轮全程复习构想练习:10-12离散型随机变量的均值与方差、正态分布 .DOC_第7页
第7页 / 共11页
2016高考(新课标)数学(理)一轮全程复习构想练习:10-12离散型随机变量的均值与方差、正态分布 .DOC_第8页
第8页 / 共11页
2016高考(新课标)数学(理)一轮全程复习构想练习:10-12离散型随机变量的均值与方差、正态分布 .DOC_第9页
第9页 / 共11页
2016高考(新课标)数学(理)一轮全程复习构想练习:10-12离散型随机变量的均值与方差、正态分布 .DOC_第10页
第10页 / 共11页
2016高考(新课标)数学(理)一轮全程复习构想练习:10-12离散型随机变量的均值与方差、正态分布 .DOC_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课时作业69离散型随机变量的均值与方差、正态分布1(2014重庆卷)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片(1)求所取3张卡片上的数字完全相同的概率;(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望(注:若三个数a,b,c满足abc,则称b为这三个数的中位数)解析:(1)由古典概型中的概率计算公式知所求概率为p.(2)X的所有可能值为1,2,3,且P(X1),P(X2),P(X3),故X的分布列为从而E(X)123.2(2014江西卷)随机将1,2,2n(nN*,n2)这2n个连续正整数分成A

2、,B两组,每组n个数A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2,记a2a1,b2b1.(1)当n3时,求的分布列和数学期望;(2)令C表示事件“与的取值恰好相等”,求事件C发生的概率P(C);(3)对(2)中的事件C,表示C的对立事件,判断P(C)和P()的大小关系,并说明理由解析:(1)当n3时,的所有可能取值为2,3,4,5.将6个正整数平均分成A,B两组,不同的分组方法共有C20种,所以的分布列为2345PE()2345.(2)和恰好相等的所有可能取值为:n1,n,n1,2n2.又和恰好相等且等于n1时,不同的分组方法有2种;和恰好相等且等于n时,不同的分组方法有2种

3、;和恰好相等且等于nk(k1,2,n2)(n3)时,不同的分组方法有2C种;所以当n2时,P(C),当n3时,P(C).(3)由(2)当n2时,P(),因此P(C)P()而当n3时,P(C)P(),理由如下:P(C)P()等价于4(2C)C.用数学归纳法来证明:()当n3时,式左边4(2C)4(22)16,式右边C20,所以式成立()假设nm(m3)时式成立,即4C成立,那么,当nm1时,左边444CC4CCC右边即当nm1时式也成立综合(),()得:对于n3的所有正整数,都有P(C)P()成立3(2014山东卷)乒乓球台面被球网分隔成甲、乙两部分如图,甲上有两个不相交的区域A,B,乙被划分为

4、两个不相交的区域C, D.某次测试要求队员接到落点在甲上的来球后向乙回球规定:回球一次,落点在C上记3分,在D上记1分,其他情况记0分对落点在A上的来球,队员小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和的分布列与数学期望解析:(1)记Ai为事件“小明对落点在A上的来球回球的得分为i分”(i0,1,3),则P(A3),P(A1),P(A0)1;记Bi为事件“小明对落点在B上的来球

5、回球的得分为i分”(i0,1,3),则P(B3),P(B1),P(B0)1.记D为事件“小明两次回球的落点中恰有一次的落点在乙上”由题意,DA3B0A1B0A0B1A0B3,由事件的独立性和互斥性,P(D)P(A3B0A1B0A0B1A0B3)P(A3B0)P(A1B0)P(A0B1)P(A0B3)P(A3)P(B0)P(A1)P(B0)P(A0)P(B1)P(A0)P(B3),所以小明两次回球的落点中恰有一次的落点在乙上的概率为.(2)由题意,随机变量可能的取值为0,1,2,3,4,6,由事件的独立性和互斥性,得P(0)P(A0B0),P(1)P(A1B0A0B1)P(A1B0)P(A0B1

6、),P(2)P(A1B1),P(3)P(A3B0A0B3)P(A3B0)P(A0B3),P(4)P(A3B1A1B3)P(A3B1)P(A1B3),P(6)P(A3B3).可得随机变量的分布列为:012346P所以数学期望E()012346.4(2014北京卷)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机

7、选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记为表中10个命中次数的平均数从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数比较E(X)与的大小(只需写出结论)解析:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明

8、的投篮命中率一场超过0.6,一场不超过0.6”则CAB,A,B独立根据投篮统计数据,P(A),P(B).P(C)P(A)P(B).所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为.(3)E(X).5(2014福建卷)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:()顾客所获的奖励额为60元的概率;()顾客所获的奖励额的分布列及数学期望;(2)商场对

9、奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由解析:(1)设顾客所获的奖励额为X,()依题意,得P(X60),即顾客所获的奖励额为60元的概率为.()依题意,得X的所有可能取值为20,60.P(X60),P(X20),即X的分布列为X2060P所以顾客所获的奖励额的期望为E(X)206040(元)(2)根据商场的预算,每个顾客的平均奖励额为60元所以,先寻找期望为60元的可能方案对于面值

10、由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X12060100PX1的期望为E(X1)20

11、6010060,X1的方差为D(X1)(2060)2(6060)2(10060)2.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2406080PX2的期望为E(X2)40608060,X2的方差为D(X2)(4060)2(6060)2(8060)2.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.6(2014新课标全国卷)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的

12、中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(,2),其中近似为样本平均数,2近似为样本方差s2.利用该正态分布,求P(187.8Z212.2);某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数利用的结果,求E(X)附:12.2.若ZN(,2),则P(Z)0.682 6,P(2Z2)0.954 4.解析:(1)抽取产品的质量指标值的样本平均数和样本方差s2分别为1700.021800.091900.222000.332100.242200.082300.02200,s2(30)20.02(20)20.09(10)20.2200.331020.242020.083020.02150.(2)由(1)知,ZN(200,150),从而P(187.8Z212.2)P(20012.2Z20012.2)0.682 6.由知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知XB(100,0.682 6),所以E(X)1000.682 668.26.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3