收藏 分享(赏)

2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(五)试题.pdf

上传人:a**** 文档编号:615679 上传时间:2025-12-12 格式:PDF 页数:5 大小:315.91KB
下载 相关 举报
2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(五)试题.pdf_第1页
第1页 / 共5页
2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(五)试题.pdf_第2页
第2页 / 共5页
2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(五)试题.pdf_第3页
第3页 / 共5页
2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(五)试题.pdf_第4页
第4页 / 共5页
2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(五)试题.pdf_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第 1页/共 5页学科网(北京)股份有限公司2023 年普通高等学校招生全国统一考试仿真模拟卷数学(五)注意事项:1.本卷满分 150 分,考试时间 120 分钟.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共 8 小题,每小题 5 分,共

2、 40 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合1,2,3,4A,1,3,5,7B,则 AB的子集共有()A.2 个B.3 个C.4 个D.8 个2.已知复数52i2iz,则 z ()A.1B.35C.3 55D.2 553.在 ABC中,记 ABm,ACnuuurr,则CBABACuuuruuuruuur()A.mnB.22mnurrC.22nmrurD.22mnurr4.已知函数 ln2ln 4fxxx,则 f x 的单调递增区间为()A.2,3B.3,4C.,3D.3,5.如图,已知正四棱锥 PABCD的底面边长和高分别为 2 和 1,若点 E 是棱 PD

3、 的中点,则异面直线 PA 与 CE 所成角的余弦值为()第 2页/共 5页学科网(北京)股份有限公司A.3333B.3311C.36D.666.某芯片制造厂有甲、乙、丙三条生产线均生产 5mm 规格的芯片,现有 25 块该规格的芯片,其中甲、乙、丙生产的芯片分别为 5 块,10 块,10 块,若甲、乙、丙生产该芯片的次品率分别为 0.1,0.2,0.3,则从这 25 块芯片中任取一块芯片,是正品的概率为()A.0.78B.0.64C.0.58D.0.487.已知 1sin3cossin2222xxxf x.若存在0,6x,使不等式20132f xmm有解,则实数 m 的取值范围为()A.0,

4、3B.,03,C.1,32D.5,0,2 8.已知,1,a b c,且1ln1eaa,2ln2ebb,4ln4ecc,其中e 是自然对数的底数,则()A.abcB.bacC.bcaD.cba二、选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 5 分,有选错的得 0 分,部分选对的得 2 分.9.空气质量指数大小分为五级.指数越大说明污染的情况越严重,对人体危害越大,指数范围0,50,50,100,100,200,200,300,300,500 分别对应“优”“良”“轻度污染”“中度污染”“重污染”五个等级.如图是某市连续14天的空

5、气质量指数趋势图,下面说法正确的是()第 3页/共 5页学科网(北京)股份有限公司A.这14天中有5 天空气质量指数为“轻度污染”B.从2 日到5 日空气质量越来越好C.这14天中空气质量的中位数是196.5D.连续三天中空气质量指数方差最小是5 日到 7 日10.密位制是度量角的一种方法,把一周角等分为 6000 份,每一份叫做 1 密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如 7 密位写成“007”,478 密位写成“478”.若2sincossin 2,则角 可取的值用密位制表示可能是()A.1050B.250C.1350D.42

6、5011.已知点 A,B 分别是双曲线22:14xCy的左,右顶点,点 P 是双曲线 C 的右支上位于第一象限的动点,记 PA、PB 的斜率分别为1k、2k,则下列说法正确的是()A.双曲线 C 的离心率为52B.双曲线C的焦点到其渐近线的距离为 1C.12k k 为定值 14D.存在点 P,使得1212kk12.已知 221f xx,4g xx,若方程 420f xg xf xg xaxa有四个不同的实数根,则满足上述条件的 a值可以为()A.1B.15C.35D.1三、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.若13nxx展开式中各项系数之和为 64,则该展开式中含4x

7、 的项的系数为_.14.设甲、乙两个圆柱的底面半径分别为 2,3,体积分别为1V,2V,若它们的侧面积相等,第 4页/共 5页学科网(北京)股份有限公司则12VV 的值是_.15.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作 孙子算经卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?现有这样一个相关的问题:被3 除余 2 且被5 除余3 的正整数按照从小到大的顺序排成一列,构成数列 na,记数列 na的前 n 项和为nS,则30nSn的最小值为_16.抛物线2:20C ypx p的焦点到直线10 xy 的距离

8、为 5 28,点 M 是C 上任意一点,点 N 是圆22:31Dxy上任意一点,则 MN 的最小值是_.四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.17.已知 ABC的内角,A B C 的对边分别为,a b c,且sinsinsinsinABAB 3sinsinsinACC.(1)求角 B 的大小;(2)若 BC 边上的高为2bc,求sinC.18.设等差数列 na的各项均为正数,其前 n 项和为nS,*141nnnaSan N.(1)求 na的通项公式;(2)设5nnab,求数列 nb的前 10 项和,其中 x 表示不超过 x 的最大整数,如0.90,

9、2.62.19.某校举办传统文化知识竞赛,从该校参赛学生中随机抽取100名学生,竞赛成绩的频率分布表如下:竞赛成绩50,6060,7070,8080,9090,100频率0.080.240.360.200.12(1)估计该校学生成绩的平均数(同一组中的数据用该组区间的中点值作代表);(2)已知样本中竞赛成绩在50,60 的男生有 2 人,从样本中竞赛成绩在50,60 的学生中随机抽取3 人进行调查,记抽取的男生人数为 X,求 X 的分布列及期望.第 5页/共 5页学科网(北京)股份有限公司20.如图所示的几何体中,底面 ABCD 为直角梯形,/ABCD,ABAD,四边形 PDCE为矩形,平面

10、PDCE 平面 ABCD,F 为 PA 的中点,N 为 PC 与 DE 的交点,2PD,112ABADCD.(1)求证:/FN平面 ABCD;(2)若 G 是线段 CD 上一点,平面 PBC 与平面 EFG 所成角的余弦值为66,求 DG 的长.21.设椭圆2222:10 xyCabab的左焦点为 F,上顶点为 P,离心率为22,O 是坐标原点,且2OPFP.(1)求椭圆 C 的方程;(2)过点 F 作两条互相垂直的直线,分别与 C 交于 A,B,M,N 四点,求四边形 AMBN面积的取值范围.22.已知函数 ln21f xxm xm m R.(1)当4m 时,求函数 f x 的单调区间;(2)是否存在正整数 m,使得 0f x 恒成立,若存在求出 m 的最小值,若不存在说明理由.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1