1、江苏省南通、徐州、宿迁、淮安、泰州、镇江六市联考2021届高三数学下学期第一次调研考试试题一、单项选择题(本大题共8小题,每小题5分,共计40分在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1设集合A,B,则AB A B C3,4 D3,4,52已知2i是关于x的方程的根,则实数a A2i B4 C2 D43哥隆尺是一种特殊的尺子,图1的哥隆尺可以一次性度量的长度为1,2,3,4,5,6图2的哥隆尺不能一次性度量的长度为 A11 B13 C15 D174医学家们为了揭示药物在人体内吸收、排出的规律,常借助恒速静脉滴注一室模型来进行描述,在该模型中,人体内药
2、物含量x(单位:mg)与给药时间t(单位:h)近似满足函数关系式,其中,k分别称为给药速率和药物消除速率(单位:mg/h)经测试发现,当t23时,则该药物的消除速率k的值约为(ln20.69) A B C D5的二项展开式中,奇数项的系数和为 A B C D6函数的图象大致为 A B C D7已知点P是ABC所在平面内点,有下列四个等式: 甲:; 乙:; 丙:; 丁:如果只有一个等式不成立,则该等式为A甲 B乙 C丙 D丁8已知曲线在A(,),B(,)两点处的切线分别与曲线相切于C(,),D(,),则的值为 A1 B2 C D二、多项选择题(本大题共4小题,每小题5分,共计20分在每小题给出的
3、四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9已知m,n是两条不重合的直线,是两个不重合的平面,则 A若m,n,则mn B若m,m,则 C若,m,n,则mn D若,m,n,则mn10已知函数,则 A的最小正周期为 B将的图象上所有的点向右平移个单位长度,可得到的图象 C在(,)上单调递增 D点(,0)是图象的一个对称中心11若函数的值域为2,),则 A Bm2 C D12冬末春初,乍暖还寒,人们容易感冒发热若发生群体性发热,则会影响到人们的身体健康,干扰正常工作生产某大型公司规定:若任意连续7天,每天不超过5人体温高于37.3,则称没有发生群体性发热,下列连续7天体
4、温高于37.3人数的统计特征数中,能判定该公司没有发生群体性发热的为A中位数为3,众数为2 B均值小于1,中位数为1C均值为3,众数为4 D均值为2,标准差为三、填空题(本大题共4小题,每小题5分,共计20分请把答案填写在答题卡相应位置上)13在正项等比数列中,若,则 14已知双曲线C的渐近线方程为y2x,写出双曲线C的一个标准方程: 15“康威圆定理”是英国数学家约翰康威引以为豪的研究成果之一定理的内容是这样 的:如图,ABC的三条边长分别为BCa,ACb,ABc延长线段CA至点A1,使得AA1a,以此类推得到点A2,B1,B2,C1和C2,那么这六个点共圆,这个圆称为康威圆已知a4,b3,
5、c5,则由ABC生成的康威圆的半径为 16已知在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切过直线O1O2的平面截圆柱得到四边形ABCD, 第15题其面积为8若P为圆柱底面圆弧的中点,则平面PAB与球O的交线长为 四、解答题(本大题共6小题,共计70分请在答题卡指定区域内作答解答时应写出文字说明、证明过程或演算步骤)17(本小题满分10分)已知等差数列满足(1)求数列的通项公式;(2)记数列的前n项和为若n,(为偶数),求的值18(本小题满分12分)在;cos(AB)sin(AB);tansinC这三个条件中任选两个,补充在下面问题中,若问题中的三角形存在,求b的值;若问题中的
6、三角形不存在,说明理由问题:是否存在ABC,它的内角A,B,C的对边分别为a,b,c,且a, , ? 注:如果选择多个方案分别解答,按第一个方案解答计分19(本小题满分12分)2019 年 4 月,江苏省发布了高考综合改革实施方案,试行“312”高考新模式为调研新高考模式下,某校学生选择物理或历史与性别是否有关,统计了该校高三年级800名学生的选科情况,部分数据如下表:(1)根据所给数据完成上述表格,并判断是否有99.9%的把握认为该校学生选择物理或历史与性别有关;(2)该校为了提高选择历史科目学生的数学学习兴趣,用分层抽样的方法从该类学生中抽取5人,组成数学学习小组一段时间后,从该小组中抽取
7、3人汇报数学学习心得记3人中男生人数为X,求X的分布列和数学期望E(X)20(本小题满分12分)如图,在正六边形ABCDEF中,将ABF沿直线BF翻折至ABF,使得平面ABF平面 BCDEF,O,H分别为BF和AC的中点(1)证明:OH平面AEF;(2)求平面ABC与平面ADE所成锐二面角的余弦值21(本小题满分12分)已知函数(1)若,求实数a的取值范围;(2)若函数有两个零点,证明:22(本小题满分12分)已知点A,B在椭圆(ab0)上,点A在第一象限,O为坐标原点,且OAAB(1)若a,b1,直线OA的方程为x3y0,求直线OB的斜率;(2)若OAB是等腰三角形(点O,A,B按顺时针排列),求的最大值参考答案1C 2B 3C 4A 5C 6D 7B 8B9BC 10ACD 11ABD 12BD139 14 15 1617 18 19 20 2122