收藏 分享(赏)

四川师大附中高2007届高三数学总复习高考复习科目:数学高中数学总复习.doc

上传人:高**** 文档编号:60910 上传时间:2024-05-24 格式:DOC 页数:7 大小:588KB
下载 相关 举报
四川师大附中高2007届高三数学总复习高考复习科目:数学高中数学总复习.doc_第1页
第1页 / 共7页
四川师大附中高2007届高三数学总复习高考复习科目:数学高中数学总复习.doc_第2页
第2页 / 共7页
四川师大附中高2007届高三数学总复习高考复习科目:数学高中数学总复习.doc_第3页
第3页 / 共7页
四川师大附中高2007届高三数学总复习高考复习科目:数学高中数学总复习.doc_第4页
第4页 / 共7页
四川师大附中高2007届高三数学总复习高考复习科目:数学高中数学总复习.doc_第5页
第5页 / 共7页
四川师大附中高2007届高三数学总复习高考复习科目:数学高中数学总复习.doc_第6页
第6页 / 共7页
四川师大附中高2007届高三数学总复习高考复习科目:数学高中数学总复习.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考复习科目:数学 高中数学总复习(一) 复习内容:高中数学第一章-集合 复习范围:第一章编写时间:2003修订时间:总计第一次 2005-5 I. 基础知识要点 1. 集合中元素具有确定性、无序性、互异性.2. 集合的性质:任何一个集合是它本身的子集,记为;空集是任何集合的子集,记为;空集是任何非空集合的真子集;如果,同时,那么A = B.如果.注:Z= 整数() Z =全体整数 ()已知集合S 中A的补集是一个有限集,则集合A也是有限集.()(例:S=N; A=,则CsA= 0) 空集的补集是全集. 若集合A=集合B,则CBA = , CAB = CS(CAB)= D ( 注 :CAB =

2、 ).3. (x,y)|xy =0,xR,yR坐标轴上的点集.(x,y)|xy0,xR,yR二、四象限的点集. (x,y)|xy0,xR,yR 一、三象限的点集.注:对方程组解的集合应是点集.例: 解的集合(2,1).点集与数集的交集是. (例:A =(x,y)| y =x+1 B=y|y =x2+1 则AB =)4. n个元素的子集有2n个. n个元素的真子集有2n 1个. n个元素的非空真子集有2n2个.5. 一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:若应是真命题.解:逆否:a = 2且 b = 3,则a+b =

3、5,成立,所以此命题为真. .解:逆否:x + y =3x = 1或y = 2.,故是的既不是充分,又不是必要条件.小范围推出大范围;大范围推不出小范围.例:若. II. 竞赛知识要点1. 集合的运算. De Morgan公式 CuA CuB = Cu(A B) CuA CuB = Cu(A B)2. 容斥原理:对任意集合AB有. .高考复习科目:数学 高中数学总复习(二) 复习内容:高中数学第二章-函数 复习范围:第二章编写时间:2004-2修订时间:总计第一次 2005-5 I. 基础知识要点 1. 函数的三要素:定义域,值域,对应法则.2. 函数的单调区间可以是整个定义域,也可以是定义域

4、的一部分. 对于具体的函数来说可能有单调区间,也可能没有单调区间,如果函数在区间(0,1)上为减函数,在区间(1,2)上为减函数,就不能说函数在上为减函数.3. 反函数定义:只有满足,函数才有反函数. 例:无反函数.函数的反函数记为,习惯上记为. 在同一坐标系,函数与它的反函数的图象关于对称.注:一般地,的反函数. 是先的反函数,在左移三个单位.是先左移三个单位,在的反函数.4. 单调函数必有反函数,但并非反函数存在时一定是单调的.因此,所有偶函数不存在反函数.如果一个函数有反函数且为奇函数,那么它的反函数也为奇函数.设函数y = f(x)定义域,值域分别为X、Y. 如果y = f(x)在X上

5、是增(减)函数,那么反函数在Y上一定是增(减)函数,即互为反函数的两个函数增减性相同. 一般地,如果函数有反函数,且,那么. 这就是说点()在函数图象上,那么点()在函数的图象上.5. 指数函数:(),定义域R,值域为().当,指数函数:在定义域上为增函数;当,指数函数:在定义域上为减函数.当时,的值越大,越靠近轴;当时,则相反.6. 对数函数:如果()的次幂等于,就是,数就叫做以为底的的对数,记作(,负数和零没有对数);其中叫底数,叫真数.对数运算:(以上)注:当时,.:当时,取“+”,当是偶数时且时,而,故取“”.例如:中x0而中xR).()与互为反函数.当时,的值越大,越靠近轴;当时,则

6、相反.7. 奇函数,偶函数:偶函数:设()为偶函数上一点,则()也是图象上一点.偶函数的判定:两个条件同时满足定义域一定要关于轴对称,例如:在上不是偶函数.满足,或,若时,.奇函数:设()为奇函数上一点,则()也是图象上一点.奇函数的判定:两个条件同时满足定义域一定要关于原点对称,例如:在上不是奇函数.满足,或,若时,.8. 对称变换:y = f(x)y =f(x)y =f(x)9. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:在进行讨论.10. 外层函数的定义域是内层函数的值域.例如:已知函数f(x)= 1+的定义域为A,函数ff(x)的定义域是B,则集合A与集合B之间的

7、关系是 . 解:的值域是的定义域,的值域,故,而A,故.11. 常用变换:.证:证:12. 熟悉常用函数图象:例:关于轴对称. 关于轴对称.熟悉分式图象:例:定义域,值域值域前的系数之比.四川师大附中高2007届高三数学总复习(三)3. 数 列 知识要点等差数列等比数列定义递推公式;通项公式()中项()()前项和重要性质1. 等差、等比数列:看数列是不是等差数列有以下三种方法:2()(为常数).看数列是不是等比数列有以下四种方法:(,)注:i. ,是a、b、c成等比的双非条件,即a、b、c等比数列.ii. (ac0)为a、b、c等比数列的充分不必要.iii. 为a、b、c等比数列的必要不充分.

8、iv. 且为a、b、c等比数列的充要.注意:任意两数a、c不一定有等比中项,除非有ac0,则等比中项一定有两个.(为非零常数).正数列成等比的充要条件是数列()成等比数列.数列的前项和与通项的关系:注: (可为零也可不为零为等差数列充要条件(即常数列也是等差数列)若不为0,则是等差数列充分条件).等差前n项和 可以为零也可不为零为等差的充要条件若为零,则是等差数列的充分条件;若不为零,则是等差数列的充分条件. 非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)2. 等差数列依次每k项的和仍成等差数列,其公差为原公差的k2倍;若等差数列的项数为2,则;若等差数列的项数为,

9、则,且, . 3. 常用公式:1+2+3 +n = 注:熟悉常用通项:9,99,999,; 5,55,555,.4. 等比数列的前项和公式的常见应用题:生产部门中有增长率的总产量问题. 例如,第一年产量为,年增长率为,则每年的产量成等比数列,公比为. 其中第年产量为,且过年后总产量为:银行部门中按复利计算问题. 例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月的元过个月后便成为元. 因此,第二年年初可存款:=.分期付款应用题:为分期付款方式贷款为a元;m为m个月将款全部付清;为年利率.5. 数列常见的几种形式:(p、q为二阶常数)用特证根方法求解.具体步骤:写出特征方程(对应,

10、x对应),并设二根若可设,若可设;由初始值确定.(P、r为常数)用转化等差,等比数列;逐项选代;消去常数n转化为的形式,再用特征根方法求;(公式法),由确定.转化等差,等比:.选代法:.用特征方程求解:.由选代法推导结果:.6. 几种常见的数列的思想方法:等差数列的前项和为,在时,有最大值. 如何确定使取最大值时的值,有两种方法:一是求使,成立的值;二是由利用二次函数的性质求的值.如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前项和可依照等比数列前项和的推倒导方法:错位相减求和. 例如:两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差的最小公倍数.高考资源网 2006精品资料系列

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3