1、吉林省松原市扶余县第一中学2013届高三总复习 专题三 第1讲 等差数列、等比数列知能演练轻松闯关 新人教A版1(2011高考江西卷)设an为等差数列,公差d2,Sn为其前n项和,若S10S11,则a1()A18B20C22 D24解析:选B.因为S10S11,所以a110.又因为a11a110d,所以a120.2(2012高考安徽卷)公比为2的等比数列an的各项都是正数,且a3a1116,则a5()A1 B2C4 D8解析:选A.a3a1116,a16.又an0,a74.a5a7q24221.故选A.3(2012东北三校模拟)等差数列an中,a5a64,则log2(2a12a22a10)()
2、A10 B20C40 D2log25解析:选B.依题意得,a1a2a3a105(a5a6)20,因此有log2(2a12a22a10)a1a2a3a1020.4(2012浙江嘉兴质检)已知数列an满足a11,an1an2n(nN*),则a10()A64 B32C16 D8解析:选B.因为an1an2n,所以an1an22n1,两式相除得2.又a1a22,a11,所以a22,则24,即a102532.5(2011高考上海卷)设an是各项为正数的无穷数列,Ai是边长为ai,ai1的矩形的面积(i1,2,),则An为等比数列的充要条件是()Aan是等比数列Ba1,a3,a2n1,或a2,a4,a2n
3、,是等比数列Ca1,a3,a2n1,和a2,a4,a2n,均是等比数列Da1,a3,a2n1,和a2,a4,a2n,均是等比数列,且公比相同解析:选D.Aiaiai1,若An为等比数列,则为常数,即,.a1,a3,a5,a2n1,和a2,a4,a2n,成等比数列,且公比相等反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q,则q,从而An为等比数列6(2012高考课标全国卷)等比数列an的前n项和为Sn,若S33S20,则公比q_.解析:S33S20,a1a2a33(a1a2)0,a1(44qq2)0.a10,q2.答案:27设等差数列an的前n项和为Sn,若a111,a4a66,则当S
4、n取最小值时,n等于_解析:an是等差数列,a4a62a56,即a53,d2,得an是首项为负数的递增数列,所有的非正项之和最小,a61,a71,当n6时,Sn取最小值答案:68在数列an中,如果对任意nN*都有k(k为常数),则称数列an为等差比数列,k称为公差比现给出下列命题:等差比数列的公差比一定不为零;等差数列一定是等差比数列;若an3n2,则数列an是等差比数列;若等比数列是等差比数列,则其公比等于公差比其中正确命题的序号为_解析:若k0,an为常数列,分母无意义,正确;公差为零的等差数列不是等差比数列,错误;3,满足定义,正确;设ana1qn1(q0),则q,正确答案:9(2011
5、高考福建卷)已知等差数列an中,a11,a33.(1)求数列an的通项公式;(2)若数列an的前k项和Sk35,求k的值解:(1)设等差数列an的公差为d,则ana1(n1)d.由a11,a33可得12d3,解得d2.从而an1(n1)(2)32n.(2)由(1)可知an32n,所以Sn2nn2.由Sk35可得2kk235,即k22k350,解得k7或k5.又kN*,故k7.10在公差为d(d0)的等差数列an和公比为q的等比数列bn中,a2b13,a5b2,a14b3,(1)求数列an与bn的通项公式;(2)令cnban,求数列cn的前n项和Tn.解:(1)由条件得an2n1,bn3n.(2
6、)由(1)得cnbanb2n132n1.9,c13,cn是首项为3,公比为9的等比数列,Tn(9n1)11已知数列an的前n项和为Sn,a1,且2Sn2Sn12an11(n2,nN*)数列bn满足b1,且3bnbn1n(n2,nN*)(1)求证:数列an为等差数列;(2)求证:数列bnan为等比数列;(3)求数列bn的通项公式以及前n项和Tn.解:(1)证明:2Sn2Sn12an11(n2,nN*),当n2时,2an2an11,可得anan1.数列an为等差数列(2)证明:an为等差数列,公差d,ana1(n1)n.又3bnbn1n(n2),bnbn1n(n2),bnanbn1nnbn1n(bn1n)bn1(n1)(bn1an1),又b1a10,对nN*,bnan0,得(n2)数列bnan是首项为,公比为的等比数列(3)由(2)得bnann1,bnn1(nN*)b1a1b2a2bnan,b1b2bn(a1a2an).Tn.Tn(nN*)