1、吉林省桦甸市第四中学2013届高考数学一轮复习概率、期望与方差部分训练题(一)一、选择题1、(上海理)设,随机变量取值的概率均为,随机变量取值的概率也均为,若记分别为的方差,则( )A B C D与的大小关系与的取值有关2、从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是A B C D二填空题元件1元件2元件31、(吉林理)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 2、(浙江文)从边长为1的正方
2、形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为的概率是_。三、解答题1、(吉林理)某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝,)的函数解析式。 (2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率。(i)若花店一天购进枝玫瑰花,表示当天的利润(单位:元),求的分布列,数学期望及方差;(ii)若花店
3、计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。2、(安徽理)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是类型试题,则使用后该试题回库,并增补一道类试题和一道类型试题入库,此次调题工作结束;若调用的是类型试题,则使用后该试题回库,此次调题工作结束。试题库中现共有道试题,其中有道类型试题和道类型试题,以表示两次调题工作完成后,试题库中类试题的数量。()求的概率;()设,求的分布列和均值(数学期望)。3、(福建理)受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从
4、该厂已售出的两种品牌轿车中随机抽取50辆,统计数据如下: 品牌甲乙首次出现故障时间x(年)轿车数量(辆)2345545每辆利润(万元)1231.82.9将频率视为概率,解答下列问题:(I)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;(II)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为,生产一辆乙品牌轿车的利润为,分别求,的分布列;(III)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由。4、(广东理)某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩
5、分组区间是:40,50), 50,60), 60,70), 70,80), 80,90), 90,100,(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,2人中成绩在90分以上(含90分)的人数记为,求的数学期望5、(湖北理)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量XX300300X700700X900X900工期延误天数Y02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;()在降水量X至少是300的条件下,工期延误不超过6天的概率。6、
6、(湖南理)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)302510结算时间(分钟/人)11.522.53已知这100位顾客中的一次购物量超过8件的顾客占55.()确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;()若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)7、(江苏)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条
7、棱平行时,的值为两条棱之间的距离;当两条棱异面时, (1)求概率; (2)求的分布列,并求其数学期望答案:一、选择题1、A2、D二、填空题1、三个电子元件的使用寿命均服从正态分布得:三个电子元件的使用寿命超过1000小时的概率为超过1000小时时元件1或元件2正常工作的概率,那么该部件的使用寿命超过1000小时的概率为2、三、解答题1、(1)当时, 当时, 得: (2)(i)可取, 的分布列为 (ii)购进17枝时,当天的利润为 得:应购进17枝2、(I)表示两次调题均为类型试题,概率为()时,每次调用的是类型试题的概率为 随机变量可取,答:()的概率为 ()求的均值为3、4、(1)由得(2)由题意知道:不低于80分的学生有12人,90分以上的学生有3人 随机变量的可能取值有0,1,2 5、6、(1)由已知,得所以该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得 的分布为 X11.522.53PX的数学期望为 .()记A为事件“该顾客结算前的等候时间不超过2.5分钟”,为该顾客前面第位顾客的结算时间,则 .由于顾客的结算相互独立,且的分布列都与X的分布列相同,所以 .故该顾客结算前的等候时间不超过2.5分钟的概率为.7、解析:版权所有:高考资源网()版权所有:高考资源网()