1、第九章 第2节一、选择题1有一个容量为66的样本,数据的分组及各组的频数如下:11.5,15.5)215.5,19.5)419.5,23.5)923.5,27.5)1827.5,31.5)1131.5,35.5)1235.5,39.5)739.5,43.5)3根据样本的频率分布估计,数据落在31.5,43.5)的概率约是( )A.B.C.D.解析由条件可知,落在31.5,43.5)的数据有127322(个),故所求概率约为.故选B.答案B2(2013福建高考)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:40,50),50,60),60,70),70,80),80,90)
2、,90,100加以统计,得到如图所示的频率分布直方图已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A588 B480 C450 D120解析由频率分布直方图可得,该模块测试成绩不少于60分的学生人数为600(0.0050.015)10600480. 故选B.答案B3(2015惠州模拟)某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为( )甲乙698078557911133462202310140A.19、13 B13、19C20、18 D18、20解析由茎叶图可知,甲的中位数为1
3、9,乙的中位数为13.故选A.答案A4(2015咸阳模拟)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为me,众数为mo,平均值为,则( )Amemo BmemoCmemo Dmome解析由图可知,30名学生的得分情况依次为得3分的有2人,得4分的有3人,得5分的有10人,得6分的有6人,得7分的有3人,得8分的有2人,得9分的有2人,得10分的有2人中位数为第15、16个数(分别为5、6)的平均数,即me5.5,5出现的次数最多,故mo5,5.97.于是得mome.故选D.答案D5如图,样本A和B分别取自两个不同的
4、总体,它们的样本平均数分别为A和B,样本标准差分别为sA和sB,则( )A.AB,sAsB B.AB,sAsBC.AB,sAsB D.AB,sAsB解析A中的数据都不大于B中的数据,所以AB,但A中的数据比B中的数据波动幅度大,所以sAsB.答案B6(2013安徽高考)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A这种抽样方法是一种分层抽样B这种抽样方法是一种系统抽样C这五名男生成绩的方差大于这五名女生成绩的方
5、差D该班男生成绩的平均数小于该班女生成绩的平均数解析根据分层抽样和系统抽样定义判断A,B,求出五名男生和五名女生成绩的方差判断C.A,不是分层抽样,因为抽样比不同B,不是系统抽样,因为随机询问,抽样间隔未知C,五名男生成绩的平均数是90,五名女生成绩的平均数是91,五名男生成绩的方差为s(1616440)8,五名女生成绩的方差为s(94494)6,显然,五名男生成绩的方差大于五名女生成绩的方差D,由于五名男生和五名女生的成绩无代表性,不能确定该班男生和女生的平均成绩故选C.答案C二、填空题7将容量为n的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为234641,且前
6、三组数据的频数之和等于27,则n_.解析第一组至第六组数据的频率之比为234641,前三组频数和为n27,故n60.答案608如图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是20.5,26.5,样本数据的分组为20.5,21.5),21.5,22.5),22.5,23.5),23.5,24.5),24.5,25.5),25.5,26.5已知样本中平均气温低于22.5 的城市个数为11,则样本中平均气温不低于25.5 的城市个数为_解析最左边两个矩形面积之和为0.1010.1210.22,总城市数为110.2250,最右面矩形面积为0.1810.
7、18,500.189.答案99(2013辽宁高考)为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为_解析设5个班级中参加的人数分别为x1,x2,x3,x4,x5,则由题意知7,(x17)2(x27)2(x37)2(x47)2(x57)220,五个整数的平方和为20,则必为0119920,由|x7|3可得x10或x4.由|x7|1可得x8或x6,由上可知参加的人数分别为4,6,7,8,10,故最大值为10.答案10三、解答题10某地区100位居民的人均月用水量(单位:
8、t)的分组及各组的频数如下:0,0.5),4;0.5,1),8;1,1.5),15;1.5,2),22;2,2.5),25;2.5,3),14;3,3.5),6;3.5,4),4;4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数;(3)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?解(1)频率分布表分组频数频率0,0.5)40.040.5,1)80.081,1.5)150.151.5,2)220.222,2.5)250.252.5,3)140.1
9、43,3.5)60.063.5,4)40.044,4.5)20.02合计1001(2)频率分布直方图如图:众数:2.25,中位数:2.02,平均数:2.02.(3)人均月用水量在3t以上的居民所占的比例为6%4%2%12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量在3t以下,因此政府的解释是正确的11以下茎叶图记录了甲、乙两组四名同学的植树棵数乙组记录中有一个数据模糊,无法确认,在图中以X表示图所示的茎叶图表示(1)如果X8,求乙组同学植树棵数的平均数和方差;(2)如果X9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率(注:方差s2(x1)2(x
10、2)2(xn)2,其中为x1,x2,xn的平均数)解(1)当X8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10,所以平均数为,方差为s2.(2)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A3,B2),(A3,B3),(A3,B4),(A4,B1),(A4,B2),
11、(A4,B3),(A4,B4),用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为P(C).12(2015惠州调研)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50),50,60),90,100后得到如图所示的频率分布直方图. (1)求图中实数a的值;(2)若该校高一年级共有学生640名,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在40,50)与90,100两个分数段内的学生中
12、随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率解(1)因为图中所有小矩形的面积之和等于1,所以10(0.0050.010.02a0.0250.01)1,解得a0.03.(2)根据频率分布直方图,成绩不低于60分的频率为110(0.0050.01)0.85.由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为6400.85544.(3)成绩在40,50)分数段内的人数为400.052,成绩在90,100分数段内的人数为400.14,则记在40,50)分数段的两名同学为A1,A2,在90,100分数段内的同学为B1,B2,B3,B4.若从这6名学生中随机抽取2人,则总的取法共有15种如果2名学生的数学成绩都在40,50)分数段内或都在90,100分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10;如果一个成绩在40,50)分数段内,另一个成绩在90,100分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.则所取2名学生的数学成绩之差的绝对值不大于10的取法有(A1,A2),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4)共7种取法,所以所求概率为P.