高考真题(2019北京卷(文)已知椭圆的右焦点为,且经过点.()求椭圆C的方程;()设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|ON|=2,求证:直线l经过定点.【解析】()因为椭圆的右焦点为,所以;因为椭圆经过点,所以,所以,故椭圆的方程为.()设联立得,.直线,令得,即;同理可得.因为,所以;,解之得,所以直线方程为,所以直线恒过定点.【答案】();()见解析.
Copyright@ 2020-2024 m.ketangku.com网站版权所有
黑ICP备2024021605号-1