收藏 分享(赏)

山东省烟台市2021届高三下学期5月高考适应性练习(二)(二模)数学试题 WORD版含答案.doc

上传人:高**** 文档编号:574998 上传时间:2024-05-29 格式:DOC 页数:11 大小:2.02MB
下载 相关 举报
山东省烟台市2021届高三下学期5月高考适应性练习(二)(二模)数学试题 WORD版含答案.doc_第1页
第1页 / 共11页
山东省烟台市2021届高三下学期5月高考适应性练习(二)(二模)数学试题 WORD版含答案.doc_第2页
第2页 / 共11页
山东省烟台市2021届高三下学期5月高考适应性练习(二)(二模)数学试题 WORD版含答案.doc_第3页
第3页 / 共11页
山东省烟台市2021届高三下学期5月高考适应性练习(二)(二模)数学试题 WORD版含答案.doc_第4页
第4页 / 共11页
山东省烟台市2021届高三下学期5月高考适应性练习(二)(二模)数学试题 WORD版含答案.doc_第5页
第5页 / 共11页
山东省烟台市2021届高三下学期5月高考适应性练习(二)(二模)数学试题 WORD版含答案.doc_第6页
第6页 / 共11页
山东省烟台市2021届高三下学期5月高考适应性练习(二)(二模)数学试题 WORD版含答案.doc_第7页
第7页 / 共11页
山东省烟台市2021届高三下学期5月高考适应性练习(二)(二模)数学试题 WORD版含答案.doc_第8页
第8页 / 共11页
山东省烟台市2021届高三下学期5月高考适应性练习(二)(二模)数学试题 WORD版含答案.doc_第9页
第9页 / 共11页
山东省烟台市2021届高三下学期5月高考适应性练习(二)(二模)数学试题 WORD版含答案.doc_第10页
第10页 / 共11页
山东省烟台市2021届高三下学期5月高考适应性练习(二)(二模)数学试题 WORD版含答案.doc_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
资源描述

1、烟台市2021年高考适应性练习(二)数学注意事项:1本试题满分150分,考试时间为120分钟2答卷前,务必将姓名和准考证号填涂在答题卡上3使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清淅,超出答题区书写的答案无效;在草稿纸、试题卷上答题无效一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的1. 已知集合,则( )A. B. C. D. 2. 已知复数满足,则的最小值为( )A. 1B. C. D. 3. 展开式中项的系数为( )A. 28B. C. 112D. 4. 许多球状病毒的空间结构可抽象为正二十面体正二十面体的每一个

2、面均为等边三角形,共有12个顶点、30条棱如图所示,由正二十面体的一个顶点和与相邻的五个顶点可构成正五棱锥,则与面所成角的余弦值约为( )(参考数据)A. B. C. D. 5. 若向量,满足,且,则与夹角的余弦值为( )A. B. C. D. 6. 袋中装有标号分别为1,2,3,4,5,6的六个相同小球,现有一款摸球游戏,从袋中一次性摸出三个小球,记下号码并放回,如果三个号码的和是3的倍数,则获奖,若有4人参与摸球游戏,则恰好2人获奖的概率是( )A. B. C. D. 7. 已知函数是定义在区间上的偶函数,且当时,则方程根的个数为( )A. 3B. 4C. 5D. 68. 已知双曲线:的左

3、、右焦点分别为,点在的右支上,与交于点,若,且,则的离心率为( )A. B. C. D. 二、选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分9. 某教练组为了比较甲、乙两名篮球运动员的竞技状态,选取了他们最近10场常规赛得分制成如图的茎叶图,则从最近10场比赛的得分看( )A. 甲的中位数大于乙的中位数B. 甲的平均数大于乙的平均数C. 甲的竞技状态比乙的更稳定D. 乙的竞技状态比甲的更稳定10. 下列命题成立的是( )A. 若,则B. 若,则C. 若,则D. 若,则11. 关于函数的下列结论正确的是( )

4、A. 为图象的一条对称轴B. 为图象的一个对称中心C. 的最大值为D. 的最小正周期为12. 过抛物线:焦点的直线交于,两点,为坐标原点,则( )A. 不存在直线,使得B. 若,则直线的斜率为C. 过作准线的垂线,垂足为,若,则D. 过,两点分别作抛物线的切线,则两切线交点的纵坐标为定值三、填空题:本题共4小题,每小题5分,共20分13. 已知,则的值为_14. 已知两条直线:,:与圆:交于,四点且构成正方形,则的值为_15. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2反复进行上述两种运算,经过有限次步骤后,必进入循环图1-4-2-1,这就是数学史上著名的“冰雹猜

5、想”例如:正整数,根据上述运算法则得出63105168421,共经过8个步骤变成1(简称为8步“雹程”)“冰雹猜想”可表示为数列(为正整数),若,则的所有可能取值之和为_16. 在一次综合实践活动中,某手工制作小组利用硬纸板做了一个如图所示的几何模型,底面为边长是4的正方形,半圆面底面经研究发现,当点在半圆弧上(不含,点)运动时,三棱锥的外接球始终保持不变,则该外接球的表面积为_四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17. 从,这个条件中任选一个,补充在下面问题中,并给出解答问题:在中,角,的对边分别为,_(1)求;(2)若,求面积的最大值注:如果选择多个条件

6、分别解答,按第一个解答计分18. 已知是公差为2的等差数列,且是和的等比中项(1)求通项公式;(2)设数列满足,求的前项和19. 如图,四棱台中,底面为直角梯形,底面,为棱中点(1)证明:平面;(2)求二面角的余弦值20. 随着时代发展和社会进步,教师职业越来越受青睐,考取教师资格证成为不少人的就业规划之一当前,中小学教师资格考试分笔试和面试两部分已知某市2020年共有10000名考生参加了中小学教师资格考试的笔试,现从中随机抽取100人的笔试成绩(满分视为100分)作为样本,整理得到如下频数分布表:笔试成绩人数51025302010(1)假定笔试成绩不低于90分为优秀,若从上述样本中笔试成绩

7、不低于80分的考生里随机抽取2人,求至少有1人笔试成绩为优秀的概率;(2)由频数分布表可认为该市全体考生的笔试成绩近似服从正态分布,其中近似为100名样本考生笔试成绩的平均值(同一组中的数据用该组区间的中点值代替),据此估计该市全体考生中笔试成绩不低于85.9的人数(结果四舍五入精确到个位)(3)考生甲为提升综合素养报名参加了某拓展知识竞赛,该竞赛要回答3道题,前两题是哲学知识,每道题答对得3分,答错得0分;最后一题是心理学知识,答对得4分,答错得0分已知考生甲答对前两题的概率都是,答对最后一题的概率为,且每道题答对与否相互独立,求考生甲的总得分的分布列及数学期望(参考数据:;若,则,)21.

8、 已知椭圆过点,离心率为(1)求椭圆方程;(2)过点作椭圆的两条弦,(,分别位于第一、二象限)若,与直线分别交于点,求证:22. 已知函数在处的切线斜率为(1)确定值,并讨论函数的单调性;(2)设,若有两个不同零点,且证明:烟台市2021年高考适应性练习(二)数学 答案版注意事项:1本试题满分150分,考试时间为120分钟2答卷前,务必将姓名和准考证号填涂在答题卡上3使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清淅,超出答题区书写的答案无效;在草稿纸、试题卷上答题无效一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的1. 已

9、知集合,则( )A. B. C. D. 【答案】C2. 已知复数满足,则的最小值为( )A. 1B. C. D. 【答案】B3. 展开式中项的系数为( )A. 28B. C. 112D. 【答案】C4. 许多球状病毒的空间结构可抽象为正二十面体正二十面体的每一个面均为等边三角形,共有12个顶点、30条棱如图所示,由正二十面体的一个顶点和与相邻的五个顶点可构成正五棱锥,则与面所成角的余弦值约为( )(参考数据)A. B. C. D. 【答案】A5. 若向量,满足,且,则与夹角的余弦值为( )A. B. C. D. 【答案】D6. 袋中装有标号分别为1,2,3,4,5,6的六个相同小球,现有一款摸

10、球游戏,从袋中一次性摸出三个小球,记下号码并放回,如果三个号码的和是3的倍数,则获奖,若有4人参与摸球游戏,则恰好2人获奖的概率是( )A. B. C. D. 【答案】C7. 已知函数是定义在区间上的偶函数,且当时,则方程根的个数为( )A. 3B. 4C. 5D. 6【答案】D8. 已知双曲线:的左、右焦点分别为,点在的右支上,与交于点,若,且,则的离心率为( )A. B. C. D. 【答案】B二、选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分9. 某教练组为了比较甲、乙两名篮球运动员的竞技状态,选取了

11、他们最近10场常规赛得分制成如图的茎叶图,则从最近10场比赛的得分看( )A. 甲的中位数大于乙的中位数B. 甲的平均数大于乙的平均数C. 甲的竞技状态比乙的更稳定D. 乙的竞技状态比甲的更稳定【答案】AC10. 下列命题成立的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】ACD11. 关于函数的下列结论正确的是( )A. 为图象的一条对称轴B. 为图象的一个对称中心C. 的最大值为D. 的最小正周期为【答案】AB12. 过抛物线:焦点的直线交于,两点,为坐标原点,则( )A. 不存在直线,使得B. 若,则直线的斜率为C. 过作准线的垂线,垂足为,若,则D. 过,两点分别作抛

12、物线的切线,则两切线交点的纵坐标为定值【答案】ACD三、填空题:本题共4小题,每小题5分,共20分13. 已知,则的值为_【答案】14. 已知两条直线:,:与圆:交于,四点且构成正方形,则的值为_【答案】15. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2反复进行上述两种运算,经过有限次步骤后,必进入循环图1-4-2-1,这就是数学史上著名的“冰雹猜想”例如:正整数,根据上述运算法则得出63105168421,共经过8个步骤变成1(简称为8步“雹程”)“冰雹猜想”可表示为数列(为正整数),若,则的所有可能取值之和为_【答案】8316. 在一次综合实践活动中,某手工制

13、作小组利用硬纸板做了一个如图所示的几何模型,底面为边长是4的正方形,半圆面底面经研究发现,当点在半圆弧上(不含,点)运动时,三棱锥的外接球始终保持不变,则该外接球的表面积为_【答案】四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17. 从,这个条件中任选一个,补充在下面问题中,并给出解答问题:在中,角,的对边分别为,_(1)求;(2)若,求面积的最大值注:如果选择多个条件分别解答,按第一个解答计分【答案】答案不唯一,具体见解析18. 已知是公差为2的等差数列,且是和的等比中项(1)求通项公式;(2)设数列满足,求的前项和【答案】(1);(2)19. 如图,四棱台中,底

14、面为直角梯形,底面,为棱中点(1)证明:平面;(2)求二面角的余弦值【答案】(1)证明见解析;(2)20. 随着时代发展和社会进步,教师职业越来越受青睐,考取教师资格证成为不少人的就业规划之一当前,中小学教师资格考试分笔试和面试两部分已知某市2020年共有10000名考生参加了中小学教师资格考试的笔试,现从中随机抽取100人的笔试成绩(满分视为100分)作为样本,整理得到如下频数分布表:笔试成绩人数51025302010(1)假定笔试成绩不低于90分为优秀,若从上述样本中笔试成绩不低于80分的考生里随机抽取2人,求至少有1人笔试成绩为优秀的概率;(2)由频数分布表可认为该市全体考生的笔试成绩近

15、似服从正态分布,其中近似为100名样本考生笔试成绩的平均值(同一组中的数据用该组区间的中点值代替),据此估计该市全体考生中笔试成绩不低于85.9的人数(结果四舍五入精确到个位)(3)考生甲为提升综合素养报名参加了某拓展知识竞赛,该竞赛要回答3道题,前两题是哲学知识,每道题答对得3分,答错得0分;最后一题是心理学知识,答对得4分,答错得0分已知考生甲答对前两题的概率都是,答对最后一题的概率为,且每道题答对与否相互独立,求考生甲的总得分的分布列及数学期望(参考数据:;若,则,)【答案】(1);(2)人;(3)分布列见解析;期望21. 已知椭圆过点,离心率为(1)求椭圆方程;(2)过点作椭圆的两条弦,(,分别位于第一、二象限)若,与直线分别交于点,求证:【答案】(1);(2)证明见解析22. 已知函数在处的切线斜率为(1)确定值,并讨论函数的单调性;(2)设,若有两个不同零点,且证明:【答案】(1),答案见解析;(2)证明见解析

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3