收藏 分享(赏)

2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt

上传人:高**** 文档编号:571269 上传时间:2024-05-29 格式:PPT 页数:23 大小:1.40MB
下载 相关 举报
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第1页
第1页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第2页
第2页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第3页
第3页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第4页
第4页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第5页
第5页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第6页
第6页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第7页
第7页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第8页
第8页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第9页
第9页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第10页
第10页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第11页
第11页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第12页
第12页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第13页
第13页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第14页
第14页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第15页
第15页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第16页
第16页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第17页
第17页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第18页
第18页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第19页
第19页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第20页
第20页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第21页
第21页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第22页
第22页 / 共23页
2017年《南方新课堂&高考总复习》数学(理科)一轮复习课件:第二章 第2讲 函数的表示法 .ppt_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第2讲 函数的表示法 考纲要求考点分布考情风向标1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数2.了解简单的分段函数,并能简单应用2012年新课标卷考查求分段函数的解析式;2013年新课标卷以分段函数为背景,考查函数与不等式的综合应用,并求参数的取值范围;2013年新课标卷以条件结构的程序框图为背景,考查分段函数的单调性及其值域;2014年新课标卷以分段函数为背景,考查指数函数、幂函数的单调性;2015年新课标卷以分段函数为背景,考查指数函数、对数函数的求值结合近几年的高考试题,预计2017年高考仍将以表示函数的解析法、图象法、分段函数为主要考点,重点考查

2、求函数值、求函数解析式及数形结合、分类讨论思想的应用题型既有选择题、填空题,也有解答题,难度中等偏上1函数的三种表示法(1)图象法:就是用函数图象表示两个变量之间的关系(2)列表法:就是列出表格表示两个变量的函数关系(3)解析法:就是把两个变量的函数关系,用等式表示2分段函数在自变量的不同变化范围中,对应关系用不同式子来表示的函数称为分段函数分段函数的对应关系为一整体81已知函数 f(x),若 f(a)3,则实数 a_.解析:若 f(a)3,即 3,a19,a8.B2若函数 f(x)x21x21,则f2f12()A1 B1C35 D351x 1a 3设函数 f(x)2xx0,|log2x|x0

3、,则方程 f(x)12的解集为_.解析:当 x0 时,由 2x12,得 x1;当 x0 时,由|log2x|12,得 x 22 或 x 2.所 以 方 程 f(x)12 的 解 集 为1,22,2.1,22,2A4设函数 f(x)1x2 x1,x2x2 x1,则 f1f2()A1516B2716C89 D18考点 1 求函数值 例 1:(1)(2014 年上海)设常数 aR,函数 f(x)|x1|x2a|.若 f(2)1,则 f(1)_.解析:由题意,得 f(2)1|4a|1.则 a4.所以 f(1)|11|14|3.答案:3(2)设函数 f(x)x3cosx1.若 f(a)11,则 f(a)

4、_.解析:f(a)a3cosa1 11,即a3cosa 10,则 f(a)(a)3cos(a)1a3cosa11019.答案:9答案:C【规律方法】第1小题由 f21 求出a,然后将x1 代 入求出 f1;第2小题函数 fxx3cosx1 为非奇非偶函数,但 x3cosx 为奇函数,可以将 a3cosa 整体代入.(3)(2015 年陕西)设 f(x)1 x,x0,2x,x0,则 f(f(2)()A1 B14 C12 D32解析:因为 f(2)2214,所以 f(f(2)f14 11411212.故选 C.【互动探究】101(2013 年浙江)已知函数 f(x)x1,若 f(a)3,则实数 a

5、_.解析:若 f(a)3,即 a13,a19,a10.考点 2 分段函数 解析:f(a)3,当 a1 时,f(a)2a123,则2a11,此等式显然不成立,当a1 时,log2(a1)3,答案:A例2:(1)(2015年 新 课 标 )已 知 函 数f(x)2x12,x1,log2x1,x1,且 f(a)3,则 f(6a)()A74 B54C34D14解得a7.f(6a)f(1)2112.故选A.74A3B6C9D12答案:C(2)(2015 年新课标)设函数 f(x)1log22x,x1,2x1,x1,f(2)f(log212)()解析:由已知,得 f(2)1log243.又 log2121

6、.所以f(log212)22log 12 1 22log 66.故 f(2)f(log212)9.故选 C.2,则 a_.解析:若 a0,则 f(a)a22a2(a1)210.所以a22a222,无解;若 a0,则 f(a)a20.所以(a2)2 2(a2)22.解得 a .故 a .答案:(3)(2014 年浙江)设函数 f(x)x22x2,x0,x2,x0,若 f(f(a)222【规律方法】(1)分段函数求值时,应先判断自变量在哪一段内,然后代入相应的解析式求解若给定函数值求自变量,应根据函数每一段的解析式分别求解,并注意检验该自变量的值是否在允许值范围内,有时也可以先由函数值判断自变量的

7、可能取值范围,再列方程或不等式求解(2)分段函数是一个函数,值域是各段函数取值范围的并集(3)分段函数解不等式应分段求解考点 3 求函数的解析式 例 3:(1)已知 f(x1)x21,求 f(x)的表达式;(2)已知 f(x)是一次函数,且满足 3f(x1)2f(x1)2x17,求 f(x)的表达式;解:(1)方法一,f(x1)x21(x1)22x2(x1)22(x1)可令 tx1,则有 f(t)t22t.故 f(x)x22x.方法二,令 x1t,则 xt1.代入原式,有 f(t)(t1)21t22t,f(x)x22x.(3)已知 f(x)2f1x 2x1,求 f(x)的表达式(2)设 f(x

8、)axb(a0),则 3f(x1)2f(x1)3ax3a3b2ax2a2bax5ab,即 ax5ab2x17 不论 x 为何值都成立,f(x)2x7.a2,b5a17.解得a2,b7.(3)f(x)2f1x 2x1,用1x代替上式中的 x,得 f1x 2f(x)2x1.由2,得3f(x)2x14x2,即 f(x)4x2x23x.【规律方法】1换元法:若已知 fgx的表达式,求 fx的 解析式,通常是令 gxt,从中解出x t,再将 gx,x 代 入已知解析式求得 ft的解析式,即得函数 fx的解析式,这种 方法叫做换元法,需注意新设变量 t 的范围.2待定系数法:若已知函数类型,可设出所求函数

9、的解析式,然后利用已知条件列方程组,再求系数.3构造方程组法:若所给解析式中含有 fx,或 fx,fx等形式,可构造另一个方程,通过解方程组得到 fx.1fx【互动探究】D2若定义在 R 上的偶函数 f(x)和奇函数 g(x)满足 f(x)g(x)ex,则 g(x)()Aexex Bexex2Cexex2Dexex2解析:fxgxex,fxgxex,即fxgxex,fxgxex,解得 g(x)exex2.难点突破 函数中的信息给予题 A|x|x|sgnx|C|x|x|sgnxB|x|xsgn|x|D|x|xsgnx例题:(2015 年湖北)设 xR,定义符号函数 sgnx1,x0,0,x0,1

10、,x0,则()解析:对于选项 A,右边x|sgnx|x,x0,0,x0,而左边|x|x,x0,x,x0,显然不正确;对于选项 B,右边xsgn|x|x,x0,0,x0,而左边|x|x,x0,x,x0,显然不正确;对于选项 C,右边|x|sgnxx,x0,0,x0,x,x0,答案:D【规律方法】以新定义为背景,重点考查分段函数及其表示,其解题的关键是准确理解题意所给的新定义,并结合分段函数的表示准确表达所给的函数.不仅新颖别致,而且能综合考查学生信息获取能力以及知识运用能力.而左边|x|x,x0,x,x0,显然不正确;对于选项 D,右边xsgnxx,x0,0,x0,x,x0,而左边|x|x,x0,x,x0,显然正确故选 D.1在函数 f(x)中,符号 f 表示一种对应关系,可以是解析式,可以是图象,也可以是图表2分段函数是同一个函数,由于在不同区间上的解析关系式不同,所以容易忽视自变量的取值范围,从而造成错误

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3