1、广东省深圳市2020届高三数学下学期第二次调研试题 理(含解析)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设z,则|z|( )A. B. C. 1D. 【答案】B【解析】【分析】把已知等式变形,再由商的模等于模的商求解即可.【详解】解:z,|z|.故选:B.【点睛】本题考查复数模的求法,考查数学转化思想方法,是基础题.2.已知集合,则( )A. B. C. D. 【答案】D【解析】【分析】根据指数函数的值域化简集合的表示,解一元二次不等式化简集合的表示,最后根据集合的交集和并集的定义、子集的定义进行判断即可.【详解】因为,所以,故
2、选项A不正确;,故选项B不正确;根据子集的定义有.故选:D【点睛】本题考查了集合交集、并集的运算,考查了子集的定义,考查了指数函数的值域,考查了解一元二次不等式,考查了数学运算能力.3.设为平面,m,n为两条直线,若,则“”是“”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据充分性和必要性的定义,结合线面垂直的性质进行判断即可.【详解】当时,如果,不一定能推出,因为直线n可以在平面外,当时,如果,根据线面垂直的性质一定能推出,所以若,则“”是“”的必要不充分条件.故选:C【点睛】本题考查了必要不充分条件的判断,考查了线
3、面垂直的性质,考查了推理论证能力.4.已知双曲线C:(,)的两条渐近线互相垂直,则C的离心率为( )A. B. 2C. D. 3【答案】A【解析】【分析】根据双曲线和渐近线的对称性,结合双曲线离心率的公式、之间的关系、双曲线渐近线方程进行求解即可.【详解】双曲线C:的渐近线方程为:,因为该双曲线的两条渐近线互相垂直,所以有.故选:A【点睛】本题考查了已知双曲线渐近线的性质求离心率问题,考查了数学运算能力,属于基础题.5.已知定义在R上的函数满足,当时,则( )A. B. 2C. D. 8【答案】A【解析】【分析】根据等式,结合已知函数的解析式、指数幂运算公式进行求解即可【详解】因为,所以,因为
4、,所以.故选:A【点睛】本题考查了求函数值,考查了指数运算公式的应用,考查了数学运算能力.6.若,的平均数为a,方差为b,则,的平均数和方差分别为( )A. 2a,2bB. 2a,4bC. ,2bD. ,4b【答案】D【解析】【分析】直接根据平均值和方差的性质得到答案.【详解】根据平均值和方差的性质知:,的平均数和方差分别为和.故选:D.【点睛】本题考查了平均值和方差,意在考查学生的计算能力和对于平均值和方差的性质的灵活运用.7.记等差数列的前n项和为,若,则( )A B. C. D. 0【答案】A【解析】【分析】直接利用等差数列和的性质得到答案.【详解】根据等差数列和的性质知:,故,即.故选
5、:A.【点睛】本题考查了等差数列和的性质,意在考查学生的计算能力和应用能力.8.函数f(x)的部分图象大致为( )A. B. C. D. 【答案】B【解析】【分析】先判断函数的奇偶性,结合选项中函数图象的对称性,先排除不符合题意的,然后结合特殊点函数值的正负即可判断.【详解】因为f(x)f(x),所以f(x)为偶函数,图象关于y轴对称,排除选项A,C,又f(2),因为,所以,所以f(2)0,排除选项D.故选:B.【点睛】本题主要考查函数图象与性质及其应用,还考查了数形结合的思想方法,属于中档题.9.已知椭圆C:的右焦点为F,O为坐标原点,C上有且只有一个点P满足,则C的方程为( )A. B.
6、C. D. 【答案】D【解析】【分析】根据对称性知在轴上,计算得到答案.【详解】根据对称性知在轴上,故,解得,故椭圆方程为:.故选:D.【点睛】本题考查了椭圆方程,意在考查学生的计算能力,确定在轴上是解题的关键.10.下面图1是某晶体的阴阳离子单层排列的平面示意图.其阴离子排列如图2所示,图2中圆的半径均为1,且相邻的圆都相切,A,B,C,D是其中四个圆的圆心,则( )A. 32B. 28C. 26D. 24【答案】C【解析】【分析】建立以为一组基底的基向量,其中且的夹角为60,根据平面向量的基本定理可知,向量和均可以用表示,再结合平面向量数量积运算法则即可得解.【详解】解:如图所示,建立以为
7、一组基底的基向量,其中且的夹角为60,.故选:C.【点睛】本题考查平面向量混合运算,观察图形特征,建立基向量是解题的关键,考查学生的分析能力和运算能力,属于中档题.11.意大利数学家斐波那契(1175年1250年)以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,该数列从第三项起,每一项都等于前两项之和,即故此数列称为斐波那契数列,又称“兔子数列”,其通项公式为(设是不等式的正整数解,则的最小值为( )A. 10B. 9C. 8D. 7【答案】C【解析】【分析】根据题意,是不等式的正整数解,化简得,即,根据数列的单调性,求出成立的的最小值,即可求出答案.【详解】解析:是不等式的正整数解,即
8、,令,则数列即为斐波那契数列,即,显然数列为递增数列,所以数列亦为递增数列,不难知道,且,使得成立的的最小值为8,使得成立的的最小值为8.故选:C.【点睛】本题考查数列的新定义,以及利用数列的单调性求最值,还根据对数运算化简不等式,考查转化思想和化简运算能力.12.已知直线与函数()的图象相交,将其中三个相邻交点从左到右依次记为A,B,C,且满足有下列结论: n的值可能为2当,且时,的图象可能关于直线对称当时,有且仅有一个实数,使得在上单调递增;不等式恒成立其中所有正确结论的编号为( )A. B. C. D. 【答案】D【解析】【分析】根据三角函数的图像性质,依次分析四个结论即可求解.【详解】
9、解析:如图所示, 不妨设,且线段的中点为,显然有,且的图象关于直线对称,即,(1),且,由正弦曲线的图像可知,().(),即,(2)由等式(1),(2)可得,即,且,且,对于结论,显然,故结论错误:对于结论,当,且时,则,故,若的图象关于直线对称,则(),即()显然与矛盾,从而可知结论错误:对于结论,且在区间上单调递增,故结论正确;对于结论,下证不等式(),(法一)当时,(),即(),(法二)即证不等式()恒成立,构造函数(),显然函数单调递增,当时,即不等式()恒成立,故结论正确:综上所述,正确的结论编号为故选:D【点睛】本题考查三角函数的图像性质,属于中档题.二、填空题:本大题共4小题,每
10、小题5分,共20分.13.曲线在点处的切线的方程为_【答案】【解析】【分析】对求导,带入得到斜率,通过点斜式得到切线方程,再整理成一般式得到答案.【详解】带入得切线的斜率,切线方程为,整理得【点睛】本题考查导数的几何意义,通过求导求出切线的斜率,再由斜率和切点写出切线方程.难度不大,属于简单题.14.若x,y满足约束条件,则的最大值为_.【答案】2【解析】【分析】画出可行域,表示可行域上的点到原点的斜率,分析并计算的最大值.【详解】作出可行域如图所示,又为可行域内的点到原点的斜率,由图得的最大值为,又,得的最大值为.故答案为:【点睛】本题考查了线性规则,正确画出不等式组表示的平面区域是解题的基
11、础,理解目标函数的意义是解题的关键15.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足和医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援若将4名医生志愿者分配到两家医院(每人去一家医院,每家医院至少去1人),则共有_种分配方案【答案】14【解析】【分析】根据题意先将4名医生分成2组,再分配的两家医院即可求得分配方案的种数,分组时有和两种分组方法,同时注意是平均分组问题.【详解】由题先将4名医生分成2组,有种,再分配的两家医院有种.故答案为:14【点睛】本题考查了排列组组合的综合应用,考查了先选再排的技巧,分组时要注意分类讨论,还有要特别注意平均分组问题的计数方法.16
12、.已知正方形边长为3,点E,F分别在边,上运动(E不与A,B重合,F不与A,D重合),将以为折痕折起,当A,E,F位置变化时,所得五棱锥体积的最大值为_.【答案】【解析】【分析】欲使五棱锥的体积最大,须有平面平面,求出底面五边形的面积以及高,利用棱锥的体积公式得出体积表达式,再由基本不等式以及导数得出五棱锥体积的最大值.【详解】解析:不妨设, 在直角三角形中,易知边上的高为又五棱锥的底面面积为欲使五棱锥的体积最大,须有平面平面,令,则,令,则不难知道,当时,取得最大值综上所述,当时,五棱锥的体积取得最大值故答案为:.【点睛】本题主要考查了利用导数解决实际应用问题,涉及了棱锥的体积公式和基本不等
13、式的应用,属于中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.中,D为上点,平分,的面积为.(1)求的长;(2)求.【答案】(1)(2)【解析】【分析】(1)根据三角形面积公式可得,可得,根据余弦定理可得;(2)根据余弦定理求出,可得,再利用以及两角差的正弦公式可得结果.【详解】(1)因为,的面积为,平分,在中,由余弦定理,得,.(2)在中,由余弦定理,得,因为平分,所以,【点睛】本题考查了余弦定理、三角形内角和定理、三角形的面积公式、两角差的正弦公式,属于
14、基础题.18.如图,三棱柱中,底面为等边三角形,E,F分别为,的中点,.(1)证明:平面;(2)求直线与平面所成角的大小.【答案】(1)证明见解析;(2)【解析】【分析】(1)通过计算可得,通过证明平面,可得,再根据直线与平面垂直的判定定理可得平面;(2)先说明直线,两两垂直,再以,的方向为x,y,z轴的正方向,以点E为原点,建立空间直角坐标系,然后利用空间向量可求得结果.【详解】(1)证明:设,则,点E为棱的中点,.三棱柱的侧面为平行四边形,四边形为矩形,点F为棱的中点,.三棱柱的底面是正三角形,E为的中点,.,且平面,平面,且,相交,平面,平面,平面.(2)由(1)可知平面,平面,三棱柱是
15、正三棱柱,设的中点为M,则直线,两两垂直,分别以,的方向为x,y,z轴的正方向,以点E为原点,建立如图所示的空间直角坐标系,设,则,.设平面的一个法向量为,则,则,则,不妨取,则,则,所以,设直线与平面所成角为,则,因为,所以则直线与平面所成角的大小为.【点睛】本题考查了线面垂直的性质与判定,考查了直线与平面所成角的向量求法,属于中档题.19.足球运动被誉为“世界第一运动”.为推广足球运动,某学校成立了足球社团由于报名人数较多,需对报名者进行“点球测试”来决定是否录取,规则如下:(1)下表是某同学6次的训练数据,以这150个点球中的进球频率代表其单次点球踢进的概率.为加入足球社团,该同学进行了
16、“点球测试”,每次点球是否踢进相互独立,将他在测试中所踢的点球次数记为,求;(2)社团中的甲、乙、丙三名成员将进行传球训练,从甲开始随机地将球传给其他两人中的任意一人,接球者再随机地将球传给其他两人中的任意一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,接到第n次传球的人即为第次触球者,第n次触球者是甲的概率记为.(i)求,(直接写出结果即可);(ii)证明:数列为等比数列.【答案】(1)(2)(i),(ii)证明见解析;【解析】【分析】(1)先求出踢一次点球命中的概率,然后根据相互独立事件的乘法公式分别求出取1,2,3的概率,再根据离散型随机变量的期望公式可求
17、得结果;(2)(i)根据传球顺序分析可得答案;(ii)根据题意可得,再变形为,根据等比数列的定义可证结论.【详解】(1)这150个点球中的进球频率为,则该同学踢一次点球命中的概率,由题意,可能取1,2,3,则,则的期望.(2)(i)因为从甲开始随机地将球传给其他两人中的任意一人,所以第1次触球者是甲的概率,显然第2次触球者是甲的概率,第2次传球有两种可能,所以第3次触球者是甲的概率概,(ii)第n次触球者是甲的概率为,所以当时,第次触球者是甲的概率为,第次触球者不是甲的概率为,则.从而,又,是以为首项,公比为的等比数列.【点睛】本题考查了样本估计总体,离散型随机变量的期望,考查了递推关系以及等
18、比数列的概念;考查分析问题、解决问题的能力,建模能力,处理数据能力.属于中档题.20.在平面直角坐标系中,P为直线:上的动点,动点Q满足,且原点O在以为直径的圆上.记动点Q的轨迹为曲线C(1)求曲线C的方程:(2)过点的直线与曲线C交于A,B两点,点D(异于A,B)在C上,直线,分别与x轴交于点M,N,且,求面积的最小值.【答案】(1)(2)【解析】【分析】(1)设动点,表示出,再由原点O在以为直径的圆上,转化为,得到曲线C的方程.(2)设而不解,利用方程思想、韦达定理构建面积的函数关系式,再求最小值.【详解】解:(1)由题意,不妨设,则,O在以为直径的圆上,曲线C的方程为.(2)设,依题意,
19、可设:(其中),由方程组消去x并整理,得,则,同理可设,可得,又,当时,面积取得最小值,其最小值为.【点睛】本题以直线与抛物线为载体,其几何关系的向量表达为背景,利用方程思想、韦达定理构建目标函数,利用坐标法解决几何问题贯穿始终,主要考查直线与抛物线的位置关系最值问题,考查学生的逻辑推理,数学运算等数学核心素养及思辨能力.21.已知函数().其中常数是自然对数的底数.(1)若,求在上的极大值点;(2)(i)证明在上单调递增;(ii)求关于x的方程在上的实数解的个数.【答案】(1)极大值点为(2)(i)证明见解析;(ii)实数解的个数为2【解析】【分析】(1)求出函数的导数,解关于导函数的方程,
20、求出函数的单调区间,求出函数的极值点即可;(2)只需证明,问题转化为只需证明,令,结合函数的单调性证明即可;求出,再证明函数的最大值;令函数,先求函数在上的零点个数,再求函数在上的零点的个数,从而求出方程解的个数【详解】解:(1)易知,若,则,所以可得下表:x0极大值函数在上单调递增,在上单调递减函数的极大值点为.(2)(i),在上必存在唯一实数,使得,易知函数在上单调递增,在上单调递减,欲证明在上单调递增,只需证明:,故只需证明,令,则,函数在上单调递减,当时,即,亦即.函数在上单调递增.(ii)先证明当时,有,令,则,函数在上单调递增,当时,即,再证明函数的最大值,显然,下证,令,则,即证
21、(),即证(),令,则,函数为单调递增函数,当时,(),令函数,先求函数在上的零点个数,且函数在上单调递减函数在上有唯一零点,即函数在上的零点个数为1:再求函数在上的零点个数,且函数在上单调递增,当时,即,故函数在上没有零点,即函数在上的零点个数为0;当时,即,故函数在上有唯一零点,即函数在上的零点个数为1:综上所述,当时,函数的零点个数为1:当时,函数的零点个数为2,当时,关于x的方程在上的实数解的个数为1:当时,关于x的方程在上的实数解的个数为2.【点睛】本题以基本初等函数及不等式为载体,考查学生利用导数分析、解决问题的能力,分类讨论思想及逻辑推理、数学运算等数学核心素养,具有较强的综合性
22、.(二)选考题:共10分,请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.选修4-4:坐标系与参数方程22.椭圆规是用来画椭圆的一种器械,它的构造如图所示,在一个十字形的金属板上有两条互相垂直的导槽,在直尺上有两个固定的滑块A,B,它们可分别在纵槽和横槽中滑动,在直尺上的点M处用套管装上铅笔,使直尺转动一周,则点M的轨迹C是一个椭圆,其中|MA|2,|MB|1,如图,以两条导槽的交点为原点O,横槽所在直线为x轴,建立直角坐标系.(1)将以射线Bx为始边,射线BM为终边的角xBM记为(02),用
23、表示点M的坐标,并求出C的普通方程;(2)已知过C的左焦点F,且倾斜角为(0)的直线l1与C交于D,E两点,过点F且垂直于l1的直线l2与C交于G,H两点.当,|GH|,依次成等差数列时,求直线l2的普通方程.【答案】(1),;(2)【解析】【分析】(1)用三角函数表示出点M的坐标,直接利用转换关系把极坐标方程转换为直角坐标方程;(2)设出直线l1的参数方程,与椭圆方程联立利用直线参数的几何意义求出、,根据题意有,列出方程求出直线l1的斜率即可求得直线l2的方程.【详解】(1)设M(x,y)依题意得:x2cos,ysin,所以M(2cos,sin),由于cos2+sin21,整理得.(2)由于
24、直线l1的倾斜角为(),且l1l2,所以直线l2的倾斜角为,依题意易知:F(),可设直线l1的方程为(t为参数),代入得到:,易知,设点D和点E对应的参数为t1和t2,所以,.则,由参数的几何意义:,设G、H对应的参数为t3和t4,同理对于直线l2,将换为,所以,由于,|GH|,依次成等差数列,所以,则,解得,所以,又,所以,所以直线l2斜率为,直线l2的直角坐标方程为x.【点睛】本题考查极坐标方程和直角坐标方程之间的转换、直线参数方程中参数的几何意义、韦达定理的应用、等差数列的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于较难题.选修4-5:不等式选讲23.已知a,b,c为正实
25、数,且满足a+b+c1.证明:(1)|a|+|b+c1|;(2)(a3+b3+c3)()3.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据a,b,c为正实数,且满足a+b+c1,得到b+c1a0,则|a|+|b+c1|a|+|a|,再利用绝对值三角不等式求解.(2)利用(a3+b3+c3)3abc,得到(a3+b3+c3)()3abc(),进而变形为,再利用基本不等式求解.【详解】(1)a,b,c为正实数,且满足a+b+c1,b+c1a0,|a|+|b+c1|a|+|a|(a)+(a)|.当且仅当(a)(a)0,即0时,等号成立.|a|+|b+c1|;(2)(a3+b3+c3)()3abc, , , ,3(a+b+c)3.当且仅当abc时等号成立.(a3+b3+c3)()3.【点睛】本题主要考查绝对值三角不等式,基本不等式的应用,还考查了运算求解的能力,属于中档题.