收藏 分享(赏)

2014届高三人教A版数学(理)一轮复习课后作业(67)随机事件的概率 WORD版含解析.doc

上传人:高**** 文档编号:563122 上传时间:2024-05-29 格式:DOC 页数:5 大小:74KB
下载 相关 举报
2014届高三人教A版数学(理)一轮复习课后作业(67)随机事件的概率 WORD版含解析.doc_第1页
第1页 / 共5页
2014届高三人教A版数学(理)一轮复习课后作业(67)随机事件的概率 WORD版含解析.doc_第2页
第2页 / 共5页
2014届高三人教A版数学(理)一轮复习课后作业(67)随机事件的概率 WORD版含解析.doc_第3页
第3页 / 共5页
2014届高三人教A版数学(理)一轮复习课后作业(67)随机事件的概率 WORD版含解析.doc_第4页
第4页 / 共5页
2014届高三人教A版数学(理)一轮复习课后作业(67)随机事件的概率 WORD版含解析.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课后作业(六十七)一、选择题1下列命题:将一枚硬币抛两次,设事件M:“两次出现正面”,事件N:“只有一次出现反面”,则事件M与N互为对立事件;若事件A与B互为对立事件,则事件A与B为互斥事件;若事件A与B为互斥事件,则事件A与B互为对立事件;若事件A与B互为对立事件,则事件AB为必然事件,其中,真命题是()A B C D2从1,2,3,4,5中随机选取一个数为a,从1,2,3中随机选取一个数为b,则ba的概率是()A. B. C. D.3甲、乙两人下棋,和棋的概率为,乙获胜的概率为,则下列说法正确的是()A甲获胜的概率是 B甲不输的概率是C乙输了的概率是 D乙不输的概率是图10434(2013

2、东莞模拟)下面的茎叶图1043表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是()A. B. C. D.5甲、乙二人玩数字游戏,先由甲任想一数字,记为a,再由乙猜甲刚才想的数字,把乙猜出的数字记为b,且a,b1,2,3,若|ab|1,则称甲、乙“心有灵犀”现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为()A. B. C. D.二、填空题6口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为_7一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只

3、取一个,取得两个红球的概率为,取得两个绿球的概率为,则取得两个同颜色的球的概率为_;至少取得一个红球的概率为_8抛掷一枚均匀的正方体骰子(各面分别标有数字1、2、3、4、5、6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过2”,则P(AB)_三、解答题9由经验得知,在人民商场付款处排队等候付款的人数及其概率如下:排队人数012345人以上概率0.10.160.30.30.10.04求:(1)至多2人排队的概率;(2)至少2人排队的概率10甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢(1)若以A表示和为6的事件,求P(A)(2)现连玩三

4、次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?(3)这种游戏规则公平吗?说明理由11(2013深圳调研)在某次测验中,有6位同学的平均成绩为75分,用xn表示编号为n(n1,2,6)的同学所得成绩,且前5位同学的成绩如下:编号n12345成绩xn7076727072(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率解析及答案一、选择题1 【解析】对将一枚硬币抛两次,共出现正,正,正,反,反,正,反,反四种结果,则事件M与N是互斥事件,但不是对立事件,故错

5、;对对立事件首先是互斥事件,故正确;对互斥事件不一定是对立事件,如中两个事件,故错;对事件A、B为对立事件,则这一次试验中A、B一定有一个要发生,故正确【答案】B2【解析】从1,2,3,4,5中选取一个数a有5种取法,从1,2,3中选取一个数b有3种取法选取两个数a,b共有5315个基本事件满足ba的基本事件共有3个因此ba的概率P.【答案】D3【解析】记事件A:“两人和棋”,事件B:“乙获胜”,事件C:“甲获胜”,则A、B、C之间两两互斥,又P(A),P(B),P(C)1P(A)P(B).【答案】A4【解析】设被污损的数字为x,则x甲(8889909192)90,x乙(8383879990x

6、),若x甲x乙,则x8.若x甲x乙,则x可以为0,1,2,3,4,5,6,7,故P.【答案】C5【解析】甲想一数字有3种结果,乙猜一数字有3种结果,基本事件总数为339.设“甲、乙心有灵犀”为事件A,则A的对立事件B为“|ab|1”,又|ab|2包含2个基本事件,P(B),P(A)1.【答案】D二、填空题6【解析】摸出红球的概率为0.45,因摸出1个球是红球、白球、黑球彼此互斥,摸出黑球的概率P10.450.230.32.【答案】0.327【解析】(1)由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P.(2)由于事件A

7、“至少取得一个红球”与事件B“取得两个绿球”是对立事件则至少取得一个红球的概率P(A)1P(B)1.【答案】8【解析】将事件AB分为:事件C“朝上一面的数为1、2”与事件D“朝上一面的数为3、5”则C、D互斥,且P(C),P(D),P(AB)P(CD)P(C)P(D).【答案】三、解答题9 【解】记“没有人排队”为事件A,“1人排队”为事件B,“2人排队”为事件C,A、B、C彼此互斥(1)记“至多2人排队”为事件E,则P(E)P(ABC)P(A)P(B)P(C)0.10.160.30.56.(2)记“至少2人排队”为事件D,“少于2人排队”为事件AB,那么事件D与事件AB是对立事件则P(D)1

8、P(AB)1P(A)P(B)1(0.10.16)0.74.10 【解】(1)甲、乙各出1到5根手指头,共有5525种可能结果,和为6有5种可能结果,P(A).(2)B与C不是互斥事件,理由如下:B与C都包含“甲赢一次,乙赢二次”,事件B与事件C可能同时发生,故不是互斥事件(3)和为偶数有13种可能结果,其概率为P,故这种游戏规则不公平11 【解】(1)6位同学的平均成绩为75分,(7076727072x6)75,x690,因此6名同学成绩的方差s2(7075)22(7675)2(7275)22(9075)249,标准差s7.(2)从前5位同学中,随机地选2位同学,其成绩的所有可能的结果为(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共10种其中恰有1位同学成绩在区间(68,75)中的结果为(70,76),(76,72),(76,70),(76,72),共4种故恰有1人成绩在区间(68,75)中的概率为P.高考资源网版权所有!投稿可联系QQ:1084591801

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3