1、课时分层作业(三)几个常用函数的导数基本初等函数的导数公式及导数的运算法则(一)(建议用时:40分钟)一、选择题1函数ymx2m-n的导数为y4x3,则()Am1,n2Bm1,n2Cm1,n2Dm1,n2Dymx2m-n,ym(2mn)x2m-n-1,又y4x3,即2若f (x),则f (x)的导数是()AB.CD.Af (x).3已知f (x)ax33x22,若f (1)4,则a的值为()ABCDBf (x)ax33x22,f (x)3ax26x,又f (1)3a64,a.4在曲线f (x)上切线的倾斜角为的点的坐标为()A(1,1)B(1,1)C(1,1)D(1,1)或(1,1)D切线的斜
2、率ktan 1,设切点为(x0,y0),则f (x0)1,又f (x),1,x01或1,切点坐标为(1,1)或(1,1)故选D.5某质点的运动方程为s(其中s的单位为米,t的单位为秒),则质点在t3秒时的速度为()A434米/秒B334米/秒C535米/秒D435米/秒D由s得s(t4)4t5.得s|t3435,故选D.二、填空题6已知f (x)x2,g(x)ln x,若f (x)g(x)1,则x_.1因为f (x)x2,g(x)ln x,所以f (x)2x,g(x)且x0,f (x)g(x)2x1,即2x2x10,解得x1或x(舍去)故x1.7函数yln x在x2处的切线斜率为_yln x,
3、y,y|x2.8已知函数f (x)f sin xcos x,则f _.f (x)f cos xsin x,f f cos sin 1,f (x)cos xsin x,f cos sin .三、解答题9若函数f (x)在xc处的导数值与函数值互为相反数,求c的值解f (x),f (c).依题意知f (c)f (c)0,即0,2c10,得c.10设f (x)x3ax2bx1的导数f (x)满足f (1)2a,f (2)b,其中常数a,bR.求曲线yf (x)在点(1,f (1)处的切线方程解因为f (x)x3ax2bx1,所以f (x)3x22axb.令x1,得f (1)32ab,又f (1)2a
4、,所以32ab2a,解得b3.令x2,得f (2)124ab,又f (2)b,所以124abb,解得a.则f (x)x3x23x1,从而f (1).又f (1)23,所以曲线yf (x)在点(1,f (1)处的切线方程为y3(x1),即6x2y10.1设f 0(x)sin x,f 1(x)f 0(x),f 2(x)f 1(x),f n1(x)f n(x),nN,则f 2 019(x)()Asin xBsin xCcos xDcos xDf 0(x)sin x,f 1(x)f 0(x)(sin x)cos x,f 2(x)f 1(x)(cos x)sin x,f 3(x)f 2(x)(sin x
5、)cos x,f 4(x)f 3(x)(cos x)sin x,所以4为最小正周期,故f 2 019(x)f 3(x)cos x2若曲线yx在点(a,a)处的切线与两个坐标轴围成的三角形的面积为18,则a()A64B32C16D8A因为yx,所以曲线yx在点(a,a)处的切线方程为:yaa (xa),由x0得ya,由y0得x3a,所以a3a18,解得a64.3已知曲线yx3在点P处的切线斜率为k,则当k3时的P点坐标为()A(2,8)B(1,1)或(1,1)C(2,8)DBy3x2,k3,3x23,x1.故P点坐标为(1,1)或(1,1)4已知直线ykx是曲线y3x的切线,则k的值为_.eln
6、 3设切点为(x0,y0)因为y3xln 3,所以k3ln 3,所以y3ln 3x,又因为(x0,y0)在曲线y3x上,所以3ln 3x03,所以x0log3 e.所以keln 3.5已知P(1,1),Q(2,4)是曲线yx2上的两点,(1)求过点P,Q的曲线yx2的切线方程;(2)求与直线PQ平行的曲线yx2的切线方程解(1)因为y2x.P(1,1),Q(2,4)都是曲线yx2上的点过P点的切线的斜率k1y|x12,过Q点的切线的斜率k2y|x24,过P点的切线方程为y12(x1),即2xy10.过Q点的切线方程为y44(x2),即4xy40.(2)因为y2x,直线PQ的斜率k1,切线的斜率ky|2x01,所以x0,所以切点M,与PQ平行的切线方程为yx,即4x4y10.