1、2.1.2 指数函数及其性质(1)班级 姓名 学号 学习目标 1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;2. 理解指数函数的概念和意义;3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点). 学习过程 一、课前准备(预习教材P54 P57,找出疑惑之处)复习1:零指数、负指数、分数指数幂怎样定义的?(1) ;(2) ;(3) ; .其中复习2:有理指数幂的运算性质.(1) ;(2) ;(3) .二、新课导学 学习探究探究任务一:指数函数模型思想及指数函数概念实例: A细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,
2、如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?B一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84,那么以时间x年为自变量,残留量y的函数关系式是什么?讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么?新知:一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.反思:为什么规定0且1呢?否则会出现什么情况呢?探究任务二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?回顾:研究方法:画出函数图象,结合图象研究函数性质研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性作图:在同一坐标系中画出下列函数图象: , 讨论:(1)函数与的图象有什么关系?如何由的图象画出的图象?(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质. 变底数为3或后呢?新知:根据图象归纳指数函数的性质.a10a0,a1)的图象恒过定点( ).A. B. C. D. 3. 指数函数,满足不等式 ,则它们的图象是( ). 4. 比较大小: .5. 函数的定义域为 . 课后作业 1. 探究:在m,n上,值域?