1、宾川四中20112012学年高二年级下学期见面考试数学试卷(文科)制卷人 李建林考生注意:1、考试时间120分钟,总分150分。 2、所有试题必须在答题卡上作答否则无效。 3、交卷时只交答题卡,请认真填写相关信息。 第I卷(选择题,共60分) 一、 单项选择题(每小题5分,共60分。在每小题给出的四个选项中,只有一个选项是正确的,请将答案填写在答题卡的相应位置)1已知是等比数列,则公比=( )ABCD2设,则下列不等式成立的是( )。A. B. C. D.3若等比数列的公比,且、成等差数列,则的值为( )A. B. C. D. 4、不等式的解集为( )A. B. C. D.5、设抛物线的顶点在
2、原点,准线方程为,则抛物线的方程是()A B C D.在下列结论中,正确的是( )为真是为真的充分不必要条件为真是为假的必要不充分条件为假是为真的充分不必要条件为真是为假的必要不充分条件A. B. C. D. 7、抛物线的焦点到准线的距离是( )A. B. C. D. 8.等差数列,若通项公式为,则等于( )A.10 B.25 C.-3 D.99.在中, ,则 ( )A、 B、 C、 D、10与椭圆共焦点且过点的双曲线方程是( )A B C D11在各项均为正数的等比数列中,若,则等于( ) A.5 B6 C7 D812.知F是椭圆 (ab0)的左焦点, P是椭圆上的一点, PFx轴, OPA
3、B(O为原点), 则该椭圆的离心率是 ( ) (A) (B) (C) (D) 第卷(非选择题,共90分)二、填空题(每空5分,共20分。把正确答案填写在答题卡的相应位置。)13已知椭圆方程为:,则椭圆的离心率为_。14、若实数满足,则的最小值是_。15在ABC中,若_。16、设满足约束条件,则的最大值是 三、计算题(共70分。解答应写出文字说明,证明过程或演算步骤。)17(本小题满分10分)在锐角中,角 所对的边分别为,已知,(1)(2)求的面积 18. (本小题满分12分)斜率为1的直线经过抛物线的焦点,且与抛物线交于A,B两点,求线段AB的长。19. (本小题满分12分)双曲线的对称轴都在
4、坐标轴上,渐近线方程为,经过点,求双曲线的标准方程。20. (本小题满分12分)某工厂生产A、B两类型桌子,每张桌子需木工和油漆两道工序完成。已知木工做A、B型桌子各一张分别需要1小时和2小时;漆工油漆A、B型桌子各一张分别需要3小时和1小时;又知木工、漆工每天工作时间分别不得得超过8小时和9小时,而生产一张A、B型桌子的利润分别为15元和20元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?最大利润是多少?21(本小题满分12分)设是等差数列,是各项都为正数的等比数列,且,()求,的通项公式;()求数列的前n项和22(本小题满分12分)椭圆的左、右焦点分别为,一条直线经过点与椭圆交于两点求的周长;若的倾斜角为,求AB的弦长