1、高考资源网() 您身边的高考专家高二数学月考1试题(文)2011.9参考公式:用最小二乘法求线性回归方程系数公式 样本数据x1,x2,xn的标准差,其中是平均值一、选择题:本大题共15小题,每小题6分,共90分,在每小题给出的四个答案中,只有一项是符合题目要求的,请把正确答案的字母填在答题卡中。1、下列给出的赋值语句中正确的是 A3=A B.M=M C.B=A=2 D.x+y=02、下列叙述随机事件的频率与概率的关系中,说法正确的是A频率就是概率B频率是客观存在的,与试验次数无关C随着试验次数的增多,频率一般会越来越接近概率D概率是随机的,在试验前不能确定3、命题“若a1,则a2”及其逆命题、
2、否命题、逆否命题4个命题中,真命题的个数是A0B1 C2 D44、 把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是A对立事件 B互斥但不对立事件 C不可能事件 D必然事件INPUTxIF x=5 THENy=10xELSEy=7.5xENDIFPRINT yEND第7题5、在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样法从中抽取容量为20的样本,则应抽取三级品的个数为A2B 4C6D106、把77化成四进制数的末位数字为A4 B3 C2 D1 7、在右边程序中,如果输入的值是20,则输出的值是 A100B50C25D1508、有下述说法:
3、是的充要条件. 是的充要条件. 是的充要条件。则其中正确的说法有A个B个C个D个9、已知a,b,cR,命题“若=3,则3”,的否命题是A.若3,则3 B.若=3,则3C.若3,则3 D.若3,则=310、从甲、乙、丙三人中任选2人作代表,则甲被选中的概率为()A. B. C. D.111、假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:x1245y11.55.58 若由资料可知y对x呈线性相关关系,则y与x的线性回归方程=bx+a必过的点是 A(2,2) B(1,2) C(3,4) D(4,5)12、已知某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图如下图所示,则甲、
4、乙两人得分的中位数之和是A B C D90100110120130140150次数O频率/组距第21题13、抛掷一枚质地均匀的硬币,如果连续抛掷 1000次,那么第999次出现正面朝上的概率是A. B. C. D. 输入a,b,c,d输出m,n,p,q 结束开始第20题14、上图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是A. B. C. D.15、种植某种树苗,成活率为,现采用随机模拟的方法估计该树苗种植棵恰好棵成活的概率,先由计算机产生到之间取整数值的随机数,指定至的数字代表成活,代表不成活,再以每个随机数为一组代表次种植的结果。经随机模拟产生如下组随机数: 据此估计,该树苗
5、种植棵恰好棵成活的概率为A. B. C. D.二、填空题:本大题共5小题,每小题6分,共30分,请把正确答案写在答题卡中横线上。16、从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个,(1)3个都是正品;(2)至少有1个是次品;(3)3个都是次品;(4)至少有1个是正品,上列四个事件中为必然事件的是_ (写出所有满足要求的事件的编号)17、用辗转相除法求两个数102、238的最大公约数是_.18、为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是_19、设命题p:|4x3|1
6、,命题q:x2(2a1)xa(a1)0。若p是q的必要而不充分条件,则实数a的取值范围是(要求用区间表示)_20、为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则如图所示,例如,明文对应密文. 当接收方收到密文时,则解密得到的明文为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.21、(10分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出了频率分布直方图(如上图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)
7、若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?22、(10分)将一颗骰子(它的六个面分别标有点数1,2,3,4,5,6)先后抛掷两次,观察向上的点数,求:两数之积是6的倍数的概率;23、(10分)设有关于x的一元二次方程。若a是从区间0,3内任取的一个数,b是从区间0,2内任取的一个数,求上述方程没有实根的概率。2011.9数学(文)月考答案BCCBD DDBAC CADDA16. (4) 17. 34 18. 9 19. 20. 1,4,2,622、解:(1)此问题中含有36个等可能基本事件,记“向上的两数之积是6的倍数”为事件A,则由图可知,事件A中含有其中的15个等可能基本事件,所以P(A),即两数之积是6的倍数的概率为.23、解:试验的所有基本事件所构成的区域为:, 其中构成事件B的区域为所以所求概率为P(B)=。- 5 - 版权所有高考资源网