1、主动成长夯基达标1.如图2-4-8,AB是半圆O的直径,C、D是半圆上的两点,半圆O的切线PC交AB的延长线于点P,PCB25,则ADC为()图2-4-8A.105B.115C.120D.125思路解析:连结AC,构造出圆周角ADC所对弧的弦切角,即PCA,而PCA显然等于PCB加上一个直角,由此即得结果.答案:B2.如图2-4-9,AB是O的直径,EF切O于C,ADEF于D,AD =2,AB =6,则AC的长为()图2-4-9A.2B.3C.23D.4思路解析:连结BC,构造出弦切角所对的圆周角,由已知有ADC与ACB相似,所以可得=,代入数值得关于AC的方程.答案:C3.如图2-4-10,
2、AB是O的弦,CD是经过O上的点M的切线.求证:图2-4-10(1)如果ABCD,那么AM =MB;(2)如果AM =BM,那么ABCD.思路分析:本题的两个问题互为逆命题,利用弦切角在中间起桥梁作用,如第(1)题,由平行得B =DMB,由弦切角得DMB =A,于是有A =B.证明:(1)CD切O于M点,DMB=A,CMA =B.ABCD,CMA =A.A =B.AM =MB.(2)AM =BM,A =B.CD切O于M点,DMB =A,CMA =B.CMA =A.ABCD.4.如图2-4-11,四边形ABED内接于O,ABDE,AC切O于A,交ED延长线于C.求证:ADAE =DCBE.图2-
3、4-11思路分析:求证成比例的四条线段正好在两个三角形ACD和ABE中,所以只要证明ACDABE即可.证明:四边形ABED内接于圆,ADC =ABE.AC是O的切线,CAD =AED.ABDE,BAE =AED.CAD =BAE.ACDABE.ADAE =DCBE.5.如图2-4-12,P为O的直径CB延长线上的一点,A为O上一点,若=,AE交BC于D,且C =PAD.图2-4-12(1)求证:PA为O的切线;(2)若BEA =30,BD 1,求AP及PB的长.思路分析:对于(1),A已经是圆上一点,所以可以连结OA,证明PA与OA垂直;对于(2),将E利用圆周角定理转移到RtODA和RtOA
4、P中,解直角三角形即可得到线段AP及PB的长.(1)证明:连结AO,=,BC为直径,AEBC,AD =DE, =DE.OA =OB,C =3.1=2C.又C =PAD,1=2.1+4=90,2+4=90.PAOA.PA为O的切线.(2)解:在RtEBD中,BEA =30,BD1,BE =2,DE =.在RtODA和RtEBD中,4=90-1=90-2C=90-2E =30=E,ODA =BDE,AD =ED,RtODARtEBD.AD =DE =,OD =BD =1,OA =BE =2.在RtOAP中,ADOP,AD2=ODDP,即=1DP.DP =3.BP =2.在RtADP中,根据勾股定理
5、,得 =.6.如图2-4-13,BA是O的直径,AD是O的切线,切点为A,BF、BD交AD于点F、D,交O于E、C,连结CE.求证:BEBF =BCBD.图2-4-13思路分析:要证BEBF =BCBD,只需证BECBDF,DBF为公共角,只需再找一组角相等,为此,过B作O的切线,构造弦切角.证明:过B作O的切线BG,则BGAD,GBC =BDF.又GBC =BEC,BEC =BDF.而CBE为公共角,BECBDF.BEBF =BCBD.7.如图2-4-14,O是ABC的外接圆,ACB的平分线CE交AB于D,交O于E,过E点作O的切线交CB的延长线于F.求证:AE2 =ADEF.图2-4-14
6、思路分析:要证AE2=ADEF,考虑相似三角形,但AE、AD、EF所在三角形不相似,因此要找线段等量代换.证明:连结BE,FEBEAD =.又3=2BE =AEBE =AE,则AE2=ADEF.8.如图2-4-15,PA、PB是O的两条切线,A、B为切点,C是上一点,已知O的半径为r,PO =2r,设PAC+PBC =,APB =,则与的大小关系为()A.B.=C.D.不能确定思路解析:连结AB、AO,PA、PB为切线,PAC=ABC,PBC=BAC.=PAC+PBC=PAC+BAC=PAB =PBA = =.AO =r,PA切O于A,AOPA,且PO=2r.APO = 30.APB =2AP
7、O=60.=60.= (180-60)=60.=.答案:B图2-4-159.如图2-4-16,已知AB为O的直径,P为AB延长线上一点,PT切O于T,过点B的切线交AT延长线于D,交PT于C.图2-4-16(1)试判断DCT的形状.(2)DCT有无可能成为正三角形?若无可能,说明为什么;若有可能,求出这时PB与PA应满足的条件.思路分析:要判断DCT的形状,先考虑其内角的关系,注意到CT、CB为切线,则连结BT,可用弦切角定理推论得ATB =BTD =90,从而可判断DCT的形状.解:(1)连结BT,CB、CT为O的切线,CTB =CBT.又AB为O的直径,ATB =DTB =90.DTC =
8、90-CTB,D =90-CBT.DTC =D,即CD =CT.DCT为等腰三角形.(2)若DCT为正三角形,则D =60,由(1)知CBT=90-D =30,而CB切O于B,A =CBT=30.在RtATB中, =sin30=,且ABT=90-30=60,ABT =CTB +P.而CTB =CBT =30,P =30.P =CTB.PB = TB.=,即当PBPA=13时,DCT为正三角形.走近高考10.如图2-4-17,AB是O的直径,PB切O于点B,PA交O于点C,APB的平分线分别交BC、AB于点D、E,交O于点F,A=60,并且线段AE、BD的长是一元二次方程x2-kx +=0的两个
9、根(k为常数).图2-4-17(1)求证:PABD=PBAE;(2)证明O的直径长为常数;(3)求tanFPA的值.思路分析:(1)由PBDPAE即可证得.(2)由韦达定理知AE +BD =k,只需证BE =BD,这可由角的相等证得.(3)要求tanFPA,先将FPA转化到直角三角形中,而FPB =FPA,FPB恰好在RtPBE中,解此三角形即可.(1)证明:PB切O于点B,PBD =A.又PE平分APB,APE =BPD.PBDPAE.=.PABD = PBAE.(2)解:由(1)知APE =EPB,又BED =A +EPA,BDE =PBC+EPB,BED =BDE.BE =BD.AE、B
10、D为方程x2-kx +=0的两个根,AE +BD =k =AB.O的直径为常数k.(3)解:PB切O于点B,AB为直径,PBA =90.A =60,PB =PAsin60=.由(1)得PABD =PBAE,.AE、BD的长是方程x2-kx +=0的两个根,AEBD =.AE =2,BD =3.在RtPBA中,PB =ABtan60=()=.在RtPBE中,tanBPE = = =,又FPA =BPF,tanFPA =.11.如图2-4-18(1),四边形ABCD是O的内接四边形,A是的中点,过A点的切线与CB的延长线交于点E. (1) (2)图2-4-18(1)求证:ABDA=CDBE;(2)
11、如图2-4-18(2),若点E在CB延长线上运动,使切线EA变为割线EFA,其他条件不变,问具备什么条件使原结论成立?思路分析:(1)只需证ABECDA.(2)如题图(2),要使结论仍然成立,注意到ABE =ADC始终成立,因此仍然只需使ABECDA即可,这样只要另一组对应角相等即可,即只需BAE =ACD或E =CAD.(1)证明:连结AC,AE切O于A,EAB =ACB.AB =AD,ACD =ACB.EAB =ACD.又四边形ABCD内接于O,ABE =CDA.ABECDA.=.ABDA =CDBE.(2)解:当BF =DA时,EAB =ACD,又ABE =ADC,ABEACD,ABDA
12、 =CDBE,此时仍然成立.12.如图2-4-19,已知C点在O直径BE的延长线上,CA切O于A点,BAC的平分线交AE于F点,BCA的平分线交AB于D点.图2-4-19(1)求ADF的度数.(2)若ACB的度数为y度,B的度数为x度,那么y与x之间有怎样的关系?试写出你的猜测并给出证明.(3)若AB =AC,求ACBC.思路分析:(1)中由AC为O切线可得B =EAC,由CD平分ACB可得ACD =DCB,根据三角形外角定理,得到ADF =AFD,建立等腰三角形,再由顶角求底角;(2)中则利用三角形内角和定理得到方程,获得关系;(3)中求线段的比值,利用ACEABC可得.解:(1)AC为O的切线,B =EAC.CD平分ACB,ACD =DCB.B +DCB=EAC+ACD,即ADF =AFD.BE为O的直径,DAE =90.ADF = (180-DAE )=45.(2)B =EAC,B +BAC+ACB =180,x+90+x+y =180.y =90-2x.0BADC,0x 45.y与x的函数关系式是y =90-2x,其中x的取值范围是0x45.(3)B =EAC,ACB =ACB,ACEBCA.=.AB =AC,B =ACB,即x =y.又y =90-2x,x =90-2x,x =30.在RtABE中, = =tanABE =tan30=.