1、【高频考点解读】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;2.能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题【热点题型】题型一 正、余弦定理的简单运用【例1】 在ABC中,角A,B,C的对边分别为a,b,c.(1)若a2,b,A45,则c_(2)若(abc)(abc)ac,则B_解析(1)法一在ABC中,由正弦定理得sin B,因为ba,所以BA,所以B30,C180AB105,sin Csin 105sin(4560)sin 45cos 60cos 45sin 60.故c3.【提分秘籍】(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,
2、或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到(2)解题中注意三角形内角和定理的应用及角的范围限制【举一反三】 (1)在ABC中,内角A,B,C的对边分别为a,b,c,且2c22a22b2ab,则ABC是()A钝角三角形 B直角三角形C锐角三角形 D等边三角形(2)在ABC中,A60,b1,SABC,则_题型二 正、余弦定理的综合运用【例2】在ABC中,角A,B,C所对的边分别是a,b,c.已知a3,cos A,BA.(
3、1)求b的值;(2)求ABC的面积解(1)在ABC中,由题意知,sin A,因为BA,所以sin Bsincos A.由正弦定理,得b3.(2)由BA,得cos Bcossin A.由ABC,得C(AB)所以sin Csin(AB)sin(AB)sin Acos Bcos Asin B.因此ABC的面积Sabsin C33.【提分秘籍】 有关三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等【举一反三】 在ABC中,内角A,B,C所对的边分别为a,b,c,且abc8.(1)若a2,b,
4、求cos C的值;(2)若sin Acos2sin Bcos22sin C,且ABC的面积Ssin C,求a和b的值解(1)由题意可知c8(ab).由余弦定理得cos C.(2)由sin Acos2sin Bcos22sin C可得:sin Asin B2sin C,化简得sin Asin Acos Bsin Bsin Bcos A4sin C.因为sin Acos Bcos Asin Bsin(AB)sin C,所以sin Asin B3sin C.由正弦定理可知ab3c.又因为abc8,故ab6.由于Sabsin Csin C,所以ab9,从而a26a90,解得a3,b3.题型三 正、余弦
5、定理在实际问题中的应用【例3】 如图,在海岸A处,发现北偏东45方向距A为(1)海里的B处有一艘走私船,在A处北偏西75方向,距A为2海里的C处的缉私船奉命以10海里/时的速度追截走私船此时走私船正以10海里/时的速度从B处向北偏东30方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(注:2.449)【提分秘籍】解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未
6、知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解【举一反三】 如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A点测得M点的仰角MAN60,C点的仰角CAB45以及MAC75;从C点测得MCA60.已知山高BC100 m,则山高MN_m.解析在RtABC中,CAB45,BC100 m,所以AC100(m)在AMC中,MAC75,MCA60,从而AMC45,由正弦定理,得,因此AM100(m)在RtMNA中,AM100 m,MAN60,由sin 60,得MN100150(m)答案150【高考风向标】【2015高考湖北,文15】如图,一辆汽车在一条水平的公路上向正西行驶
7、,到处时测得公路北侧一山顶D在西偏北的方向上,行驶600m后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度_m. 【答案】.【解析】在中,根据正弦定理知,即,所以,故应填.【2015高考湖南,文17】(本小题满分12分)设的内角的对边分别为.(I)证明:;(II) 若,且为钝角,求.【答案】(I)略;(II) 【解析】()由及正弦定理,得,所以。()因为 有()知,因此,又为钝角,所以,故,由知,从而,综上所述,【2015高考陕西,文17】的内角所对的边分别为,向量与平行.(I)求;(II)若求的面积.【答案】(I) ;(II) .【解析】 (I)因为,所以由正弦定理,得,又,从而,
8、由于所以(II)解法一:由余弦定理,得,而,得,即因为,所以,故面积为.【2015高考浙江,文16】(本题满分14分)在中,内角A,B,C所对的边分别为.已知.(1)求的值;(2)若,求的面积.【答案】(1);(2)【解析】 (1)由,得,所以.(2)由可得,.,由正弦定理知:.又,所以.【高考押题】 1在ABC中,若a4,b3,cos A,则B()A. B. C. D. 解析因为cos A,所以sin A,由正弦定理,得,所以sin B,又因为ba,所以B,B,故选A.答案A2在ABC中,A60,AB2,且ABC的面积为,则BC的长为 ()A. B. C2 D2 解析因为SABACsin A
9、2AC,所以AC1,所以BC2AB2AC22ABACcos 603,所以BC.答案B3ABC的内角A,B,C的对边分别为a,b,c,已知b2,B,C,则ABC的面积为 ()A22 B.1 C22 D.1 解析由正弦定理及已知条件,得c2,又sin Asin(BC).从而SABCbcsin A221.答案B4在ABC中,角A,B,C的对边分别为a,b,c,则“a2bcos C”是“ABC是等腰三角形”的 ()A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件解析依题意,由a2bcos C及正弦定理,得sin A2sin Bcos C,sin(BC)2sin Bcos Csi
10、n Bcos Ccos Bsin C2sin Bcos Csin(CB)0,CB,ABC是等腰三角形;反过来,由ABC是等腰三角形不能得知CB,a2bcos C因此,“a2bcos C”是“ABC是等腰三角形”的充分不必要条件,故选A.答案A5如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75,30,此时气球的高是60 m,则河流的宽度BC等于 ()A240(1)m B180(1)mC120(1)m D30(1)m 解析如图,ACD30,ABD75,AD60 m,在RtACD中,CD60(m),在RtABD中,BD60(2)(m),BCCDBD6060(2)120(1)(m)答案C6
11、在ABC中,角A,B,C的对边分别为a,b,c.若(a2c2b2)tan Bac,则角B的值为_解析由余弦定理,得cos B,结合已知等式得cos Btan B,sin B,B或.答案或7在ABC中,角A,B,C所对应的边分别为a,b,c.已知bcos Cccos B2b,则_解析由已知及余弦定理得bc2b,化简得a2b,则2.答案28设ABC的内角A,B,C的对边分别为a,b,c,且a1,b2,cos C,则sin B_9如图,在平面四边形ABCD中,AD1,CD2,AC. (1)求cosCAD的值;(2)若cosBAD,sin CBA,求BC的长解(1)在ADC中,由余弦定理,得cosCAD.故由题设知,cosCAD.(2)设BAC,则BADCAD.因为cosCAD,cosBAD,所以sin CAD,sin BAD.于是sin sin(BADCAD)sin BADcosCADcosBADsin CAD.在ABC中,由正弦定理,.故BC3.10设ABC的内角A,B,C所对边的长分别是a,b,c,且b3,c1,A2B.(1)求a的值;(2)求sin的值