收藏 分享(赏)

2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(文).docx

上传人:a**** 文档编号:517686 上传时间:2025-12-09 格式:DOCX 页数:7 大小:34.71KB
下载 相关 举报
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(文).docx_第1页
第1页 / 共7页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(文).docx_第2页
第2页 / 共7页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(文).docx_第3页
第3页 / 共7页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(文).docx_第4页
第4页 / 共7页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(文).docx_第5页
第5页 / 共7页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(文).docx_第6页
第6页 / 共7页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(文).docx_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考大题专项练一高考中的函数与导数一、非选择题1.设函数f(x)=ax2-(3a+1)x+3a+2ex.(1)若曲线y=f(x)在点(2,f(2)处的切线斜率为0,求a;(2)若f(x)在x=1处取得极小值,求a的取值范围.解:(1)因为f(x)=ax2-(3a+1)x+3a+2ex,所以f(x)=ax2-(a+1)x+1ex,f(2)=(2a-1)e2.由题设知f(2)=0,即(2a-1)e2=0,解得a=12.(2)由(1)得f(x)=ax2-(a+1)x+1ex=(ax-1)(x-1)ex.若a1,则当x1a,1时,f(x)0.所以f(x)在x=1处取得极小值.若a1,则当x(0,1)时

2、,ax-1x-10.所以1不是f(x)的极小值点.综上可知,a的取值范围是1,+.2.已知函数f(x)=ax2+x-1ex.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a1时,f(x)+e0.答案:(1)解f(x)=-ax2+(2a-1)x+2ex,f(0)=2.因此曲线y=f(x)在点(0,-1)处的切线方程是2x-y-1=0.(2)证明当a1时,f(x)+e(x2+x-1+ex+1)e-x.令g(x)=x2+x-1+ex+1,则g(x)=2x+1+ex+1.当x-1时,g(x)-1时,g(x)0,g(x)单调递增;所以g(x)g(-1)=0.因此f(x)+e0.3.

3、已知函数f(x)=ln x+12ax2-x-m(mZ).(1)若f(x)是增函数,求a的取值范围;(2)若a0,且f(x)0,g(1)=a0,g(x)=ax-12a2+1-14a在区间(0,+)内单调递减.因此g(x)在区间(0,1)内有唯一的解x0,使得ax02=x0-1,而且当0x0,当xx0时,f(x)0.所以r(x)在区间(0,1)内单调递增.所以r(x)0,由f(x)0,得0x2;由f(x)0,得1x2.所以函数f(x)的单调递增区间是(0,1),(2,+),单调递减区间是(1,2).(2)由(1)可知极小值f(2)=2ln2-4,极大值为f(1)=-52.因为方程f(x)=m有三个

4、实根,所以2ln2-4m0;当x2,时,g(x)0,g()=-2,故g(x)在(0,)存在唯一零点.所以f(x)在(0,)存在唯一零点.(2)解由题设知f()a,f()=0,可得a0.由(1)知,f(x)在(0,)只有一个零点,设为x0,且当x(0,x0)时,f(x)0;当x(x0,)时,f(x)0,所以f(x)在(0,x0)单调递增,在(x0,)单调递减.又f(0)=0,f()=0,所以,当x0,时,f(x)0.又当a0,x0,时,ax0,故f(x)ax.因此,a的取值范围是(-,0.6.定义在实数集上的函数f(x)=x2+x,g(x)=13x3-2x+m.(1)求函数f(x)的图象在x=1

5、处的切线方程;(2)若f(x)g(x)对任意的x-4,4恒成立,求实数m的取值范围.解:(1)f(x)=x2+x,当x=1时,f(1)=2,f(x)=2x+1,f(1)=3,所求切线方程为y-2=3(x-1),即3x-y-1=0.(2)令h(x)=g(x)-f(x)=13x3-x2-3x+m,则h(x)=(x-3)(x+1).当-4x0;当-1x3时,h(x)0;当3x0.要使f(x)g(x)恒成立,即h(x)max0,由上知h(x)的最大值在x=-1或x=4处取得,而h(-1)=m+53,h(4)=m-203,故m+530,即m-53,故实数m的取值范围为-,-53.7.已知函数f(x)=1

6、2ax2-(2a+1)x+2ln x(aR).(1)求f(x)的单调区间;(2)设g(x)=x2-2x,若对任意x1(0,2,均存在x2(0,2,使得f(x1)0).(1)f(x)=(ax-1)(x-2)x(x0).当a0时,x0,ax-10,在区间(2,+)内,f(x)0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+).当0a2,在区间(0,2)和1a,+内,f(x)0,在区间2,1a内,f(x)12时,01a0,在区间1a,2内,f(x)0,故f(x)的单调递增区间是0,1a和(2,+),单调递减区间是1a,2.(2)对任意x1(0,2,均存在x2(0,2,使得f(x1)g

7、(x2)在区间(0,2上有f(x)maxg(x)max.由题意可知g(x)max=0,由(1)可知,当a12时,f(x)在区间(0,2上单调递增.故f(x)max=f(2)=2a-2(2a+1)+2ln2=-2a-2+2ln2,所以-2a-2+2ln2ln2-1.故ln2-112时,f(x)在区间0,1a上单调递增,在区间1a,2上单调递减,故f(x)max=f1a=12a-(2a+1)1a+2ln1a=-12a-2-2lna12时,12a+2lna12a+2lne-1=12a-2-2.故a12时满足题意.综上,a的取值范围为(ln2-1,+).8.(2020天津,20)已知函数f(x)=x3

8、+kln x(kR),f(x)为f(x)的导函数.(1)当k=6时,求曲线y=f(x)在点(1,f(1)处的切线方程;求函数g(x)=f(x)-f(x)+9x的单调区间和极值;(2)当k-3时,求证:对任意的x1,x21,+),且x1x2,有f(x1)+f(x2)2f(x1)-f(x2)x1-x2.答案:(1)解当k=6时,f(x)=x3+6lnx,故f(x)=3x2+6x.可得f(1)=1,f(1)=9,所以曲线y=f(x)在点(1,f(1)处的切线方程为y-1=9(x-1),即y=9x-8.依题意,g(x)=x3-3x2+6lnx+3x,x(0,+).从而可得g(x)=3x2-6x+6x-

9、3x2,整理可得g(x)=3(x-1)3(x+1)x2.令g(x)=0,解得x=1.当x变化时,g(x),g(x)的变化情况如下表:x(0,1)1(1,+)g(x)-0+g(x)极小值所以,函数g(x)的单调递减区间为(0,1),单调递增区间为(1,+);g(x)的极小值为g(1)=1,无极大值.(2)证明由f(x)=x3+klnx,得f(x)=3x2+kx.对任意的x1,x21,+),且x1x2,令x1x2=t(t1),则(x1-x2)f(x1)+f(x2)-2f(x1)-f(x2)=(x1-x2)3x12+kx1+3x22+kx2-2x13-x23+klnx1x2=x13-x23-3x12

10、x2+3x1x22+kx1x2-x2x1-2klnx1x2=x23(t3-3t2+3t-1)+kt-1t-2lnt.令h(x)=x-1x-2lnx,x1,+).当x1时,h(x)=1+1x2-2x=1-1x20,由此可得h(x)在1,+)单调递增,所以当t1时,h(t)h(1),即t-1t-2lnt0.因为x21,t3-3t2+3t-1=(t-1)30,k-3,所以,x23(t3-3t2+3t-1)+kkt-1t-2lnt(t3-3t2+3t-1)-3kt-1t-2lnt=t3-3t2+6lnt+3t-1.由(1)可知,当t1时,g(t)g(1),即t3-3t2+6lnt+3t1,故t3-3t2+6lnt+3t-10.由可得(x1-x2)f(x1)+f(x2)-2f(x1)-f(x2)0.所以,当k-3时,对任意的x1,x21,+),且x1x2,有f(x1)+f(x2)2f(x1)-f(x2)x1-x2.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1