1、数 学(理工类)本试卷分为第卷(选择题)和第(非选择题)两部分,共150分,考试用时120分钟。第卷1至3页,第卷4至6页。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利!第I卷注意事项:1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分参考公式:如果事件 A,B 互斥,那么 如果事件 A,B 相互独立, P(AB)=P(A)+P(B) P(AB)=P
2、(A) P(B)柱体的体积公式V 柱体=Sh, 圆锥的体积公式V =Sh 其中 S 表示柱体的底面积其中 其中S表示锥体的底面积,h表示圆锥的高h 表示棱柱的高一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合则=( )(A)(B)(C)(D)【答案】D【解析】试题分析:选D.考点:集合运算(2)设变量x,y满足约束条件则目标函数的最小值为( )(A)(B)6(C)10(D)17【答案】B考点:线性规划(3)在ABC中,若,BC=3, ,则AC= ( )(A)1(B)2(C)3(D)4【答案】A【解析】试题分析:由余弦定理得,选A.考点:余弦定理(4)阅读右边的程序
3、框图,运行相应的程序,则输出S的值为( )(A)2(B)4(C)6(D)8【答案】B【解析】试题分析:依次循环:结束循环,输出,选B.考点:循环结构流程图(5)设an是首项为正数的等比数列,公比为q,则“q0”是“对任意的正整数n,a2n1+a2n0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为( )(A)(B)(C)(D)【答案】D考点:双曲线渐近线(7)已知ABC是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为( )(A)(B)(C)(D)【答案】B【解析】试题分析:设,故选
4、B.考点:向量数量积(8)已知函数f(x)=(a0,且a1)在R上单调递减,且关于x的方程恰好有两个不相等的实数解,则a的取值范围是( )(A)(0, (B), (C),(D),)【答案】C考点:函数性质综合应用第卷注意事项:1、用黑色墨水的钢笔或签字笔将答案写在答题卡上.2、本卷共12小题,共计110分.二、填空题:本大题共6小题,每小题5分,共30分.(9)已知,i是虚数单位,若,则的值为_.【答案】2【解析】试题分析:,则,所以,故答案为2考点:复数相等(10)的展开式中x2的系数为_.(用数字作答)【答案】【解析】试题分析:展开式通项为,令,所以的故答案为 考点:二项式定理(11)已知
5、一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_m3.(第11题图)【答案】2考点:三视图(12)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为_.【答案】【解析】试题分析:设,则由相交弦定理得,又,所以,因为是直径,则,在圆中,则,即,解得考点:相交弦定理(13)已知f(x)是定义在R上的偶函数,且在区间(-,0)上单调递增.若实数a满足,则a的取值范围是_.【答案】考点:利用函数性质解不等式(14) 设抛物线,(t为参数,p0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C(p,0),A
6、F与BC相交于点E.若|CF|=2|AF|,且ACE的面积为,则p的值为_.【答案】【解析】试题分析:抛物线的普通方程为,又,则,由抛物线的定义得,所以,则,由得,即,所以,所以,考点:抛物线定义三、解答题:本大题共6小题,共80分.(15)已知函数f(x)=4tanxsin()cos()-.()求f(x)的定义域与最小正周期;()讨论f(x)在区间上的单调性.【答案】(),()在区间上单调递增, 在区间上单调递减.解:令函数的单调递增区间是由,得 设,易知.所以, 当时, 在区间上单调递增, 在区间上单调递减.考点:三角函数性质,诱导公式、两角差余弦公式、二倍角公式、配角公式 (16) (本
7、小题满分13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,.现从这10人中随机选出2人作为该组代表参加座谈会.(I)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(II)设为选出的2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望. 【答案】()()详见解析随机变量的所有可能取值为,.所以,随机变量分布列为随机变量的数学期望.考点:概率,概率分布与数学期望 (17) (本小题满分13分)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF平面ABCD,点G为AB的中点,AB=BE=2.(I)求
8、证:EG平面ADF;(II)求二面角O-EF-C的正弦值;(III)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值. 【答案】()详见解析()().(I)证明:依题意,.设为平面的法向量,则,即 .不妨设,可得,又,可得,又因为直线,所以.(III)解:由,得.因为,所以,进而有,从而,因此.所以,直线和平面所成角的正弦值为.考点:利用空间向量解决立体几何问题(18) 已知是各项均为正数的等差数列,公差为,对任意的是和的等差中项.()设,求证:是等差数列;()设 ,求证:【答案】()详见解析()详见解析考点:等差数列、等比中项、分组求和、裂项相消求和(19)(本小题满
9、分14分)设椭圆()的右焦点为,右顶点为,已知,其中 为原点,为椭圆的离心率.()求椭圆的方程;()设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.【答案】()()【解析】(2)()解:设直线的斜率为(),则直线的方程为.设,由方程组,消去,整理得.解得,或,由题意得,从而.由()知,设,有,.由,得,所以,解得.因此直线的方程为.设,由方程组消去,解得.在中,即,化简得,即,解得或.所以,直线的斜率的取值范围为.考点:椭圆的标准方程和几何性质,直线方程(20)(本小题满分14分)设函数,,其中(I)求的单调区间;(II) 若存在极值点,且,其中,求证:;()设,函数,求证:在区间上的最大值不小于.【答案】()详见解析()详见解析()详见解析【解析】(1)当时,有恒成立,所以的单调递增区间为.(2)当时,令,解得,或.当变化时,的变化情况如下表:00单调递增极大值单调递减极小值单调递增所以的单调递减区间为,单调递增区间为,.()证明:设在区间上的最大值为,表示两数的最大值.下面分三种情况同理:(1)当时,由()知,在区间上单调递减,所以在区间上的取值范围为,因此,所以.(2)当时,由()和()知,所以在区间上的取值范围为,因此.考点:导数的运算,利用导数研究函数的性质、证明不等式