收藏 分享(赏)

江口中学2012年高三数学二轮复习概率与统计.doc

上传人:高**** 文档编号:515297 上传时间:2024-05-28 格式:DOC 页数:9 大小:725.50KB
下载 相关 举报
江口中学2012年高三数学二轮复习概率与统计.doc_第1页
第1页 / 共9页
江口中学2012年高三数学二轮复习概率与统计.doc_第2页
第2页 / 共9页
江口中学2012年高三数学二轮复习概率与统计.doc_第3页
第3页 / 共9页
江口中学2012年高三数学二轮复习概率与统计.doc_第4页
第4页 / 共9页
江口中学2012年高三数学二轮复习概率与统计.doc_第5页
第5页 / 共9页
江口中学2012年高三数学二轮复习概率与统计.doc_第6页
第6页 / 共9页
江口中学2012年高三数学二轮复习概率与统计.doc_第7页
第7页 / 共9页
江口中学2012年高三数学二轮复习概率与统计.doc_第8页
第8页 / 共9页
江口中学2012年高三数学二轮复习概率与统计.doc_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家第十一讲 概率与统计高考在考什么【考题回放】1(重庆卷)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( )A B C D解:可从对立面考虑,即三张价格均不相同, 选C2(辽宁卷)一个坛子里有编号为1,2,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是( )ABCD解: 从中任取两个球共有种取法,其中取到的都是红球,且至少有1个球的号码是偶数的取法有种取法,概率为,选D.3(广东卷) 甲、乙两个袋子中均装有红、白两种

2、颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球。现分别从甲、乙两袋中各随机抽取一个球,则取出的两球是红球的概率为_(答案用分数表示)解:P=4(上海卷) 在五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示) 解: =5. 某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率为(用数值作答) 解:由题意知所求概率6(全国II) 在某项测量中,测量结果服从正态分布若在内取值的概率为0.4,则在内取值的概率为 解:在某项测量中,测量结果x服从正态分布N(1,s2)(s0),正态分布图象的对称轴为x=1

3、,x在(0,1)内取值的概率为0.4,可知,随机变量在(1,2)内取值的概率于x在(0,1)内取值的概率相同,也为0.4,这样随机变量在(0,2)内取值的概率为0.8。高考要考什么1.(1)直接利用四种基本事件的概率基本原理,求事件发生的概率(2)把方程思想融入概率问题,解决实际问题(3)把概率问题与数列结合起来,运用数列方法解决概率问题2离散型随机变量的分布列。(1)分布列:设离散型随机变量可能取的值为x1, x2, , xi, ,取每一个值xi(i=1,2,)的概率P(=xi)Pi,则称下表为随机变量的概率分布,简称为的分布列(2)分布列的性质:由概率的性质可知,任一离散型随机变量的分布列

4、都具有下面两个性质: Pi0,i1,2,; P1P2=1(3)二项分布:如果在一次试验中某事件发生的概率是p,那么在 n 次独立重复试验中这个事件恰好发生 k 次的概率是,其中k=0,1,nq=1p,于是得到随机变量的概率分布如下:我们称这样的随机变量服从二项分布,记作B(n,p)其中n,p为参数,记=b(k;n,p).(4)离散型随机变量的期望:E=x1p1+x2p2+xipi+(5)离散型随机变量的方差:3. 若标准正态分布总体取值小于的概率用表示,即: 突 破 重 难 点【范例1】某批产品成箱包装,每箱5件一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验设取出的第一、

5、二、三箱中分别有0件、1件、2件二等品,其余为一等品()用表示抽检的6件产品中二等品的件数,求的分布列及的数学期望;()若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率解(1), , 所以的分布列为0123P的数学期望E()= (2) P()=分析提示:本题以古典概率为背景,其关键是利用排列组合的方法求出m,n,主要考察分布列的求法以及利用分布列求期望和概率。变式:袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字,求:(1)取出的3个小球

6、上的数字互不相同的概率;(2)随机变量的概率分布和数学期望;(3)计分介于20分到40分之间的概率 解:(I)解法一:“一次取出的3个小球上的数字互不相同”的事件记为,则解法二:“一次取出的3个小球上的数字互不相同的事件记为A”,“一次取出的3个小球上有两个数字相同”的事件记为,则事件和事件是互斥事件,因为,所以(II)由题意有可能的取值为:2,3,4,5所以随机变量的概率分布为2345因此的数学期望为()“一次取球所得计分介于20分到40分之间”的事件记为,则【范例2】甲、乙、丙3人投篮,投进的概率分别是, , ()现3人各投篮1次,求3人都没有投进的概率;()用表示乙投篮3次的进球数,求随

7、机变量的概率分布及数学期望E解: ()记甲投篮1次投进为事件A1 , 乙投篮1次投进为事件A2 , 丙投篮1次投进为事件A3,3人都没有投进为事件A 则P(A1)= ,P(A2)= ,P(A3)= , P(A) = P()=P()P()P() = 1P(A1) 1P (A2) 1P (A3)=(1)(1)(1)=3人都没有投进的概率为 ()解法一: 随机变量的可能值有0,1,2,3, B(3, ), P(=k)=C3k()k()3k (k=0,1,2,3) , E=np = 3 = 解法二: 的概率分布为:0123PE=0+1+2+3= 分析提示:已知概率求概率,主要运用加法公式(互斥)和乘法

8、公式(独立)以及n次独立重复试验(二项分布),注意条件和适用的范围,另外利用二项分布期望和方差结论使问题简洁明了。变式:假设每一架飞机引擎飞机中故障率为P,且个引擎是否发生故障是独立的,如果有至少50%的引擎能正常运行,问对于多大的P而言,4引擎飞机比2引擎飞机更安全?解 飞机成功飞行的概率:4引擎飞机为:2引擎飞机为:要使4引擎飞机比2引擎飞机更安全,只要所以【范例3】某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金.对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次)。设这三辆车在一年内发生此种事故的概率分别为且各车是否发生事故相

9、互独立,求一年内该单位在此保险中:(1)获赔的概率;(4分)(2)获赔金额的分布列与期望。(9分)解:设表示第辆车在一年内发生此种事故,由题意知,独立,且,()该单位一年内获赔的概率为()的所有可能值为,综上知,的分布列为求的期望有两种解法:解法一:由的分布列得(元)解法二:设表示第辆车一年内的获赔金额,则有分布列故同理得,综上有(元)变式:猎人在距离100米处射击一野兔,其命中率为0.5,如果第一次射击未中,则猎人进行第二次射击,但距离150米. 如果第二次射击又未中,则猎人进行第三次射击,并且在发射瞬间距离为200米. 已知猎人的命中概率与距离的平方成反比,求猎人命中野兔的概率.解 记三次

10、射击依次为事件A,B,C,其中,由,求得k=5000。,命中野兔的概率为配套练习1(湖南卷) 设随机变量服从标准正态分布,已知,则=( )A0.025B0.050C0.950D0.975解:服从标准正态分布, 选C2(安徽卷) 以表示标准正态总体在区间()内取值的概率,若随机变量服从正态分布,则概率等于 (A)-(B) (C)(D)解:=,选B。3(湖北卷)连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是( )ABCD解: 由向量夹角的定义,图形直观可得,当点位于直线上及其下方时,满足,点的总个数为个,而位于直线上及其下方的点有个,故所求概率,选C4(江西卷)将一骰子连续抛掷三

11、次,它落地时向上的点数依次成等差数列的概率为()解: 一骰子连续抛掷三次得到的数列共有个,其中为等差数列有三类:(1)公差为0的有6个;(2)公差为1或-1的有8个;(3)公差为2或-2的有4个,共有18个,成等差数列的概率为,选B5. 15名新生,其中有3名优秀生,现随机将他们分到三个班级中去,每班5人,则每班都分到优秀生的概率是 6. 如图,已知电路中3个开关闭合的概率都是0.5, 且是相互独立的,则灯亮的概率为 0.625 7.某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为123450.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期

12、或3期付款,其利润为250元;分4期或5期付款,其利润为300元表示经销一件该商品的利润()求事件:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率;()求的分布列及期望解:()由表示事件“购买该商品的3位顾客中至少有1位采用1期付款”知表示事件“购买该商品的3位顾客中无人采用1期付款”,()的可能取值为元,元,元,的分布列为(元)8. 某企业准备投产一批特殊型号的产品,已知该种产品的成本与产量的函数关系式为该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格与产量的函数关系式如下表所示:市场情形概率价格与产量的函数关系式好0.4中0.4差0.2设分别表示市场情形好、中、差时的利润,随机变量,表示当产量为而市场前景无法确定的利润(I)分别求利润与产量的函数关系式;(II)当产量确定时,求期望;(III)试问产量取何值时,取得最大值 ()解:由题意可得L1= (q0).同理可得 (q0)(q0) () 解:由期望定义可知 () 解:由()可知是产量q的函数,设得0解得(舍去).由题意及问题的实际意义(或当0q10时,0;当q10时, 可知,当q=10时, f(q)取得最大值,即最大时的产量q为10. - 9 - 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3