1、9.2014全国卷21 函数f(x)ax33x23x(a0)(1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)是增函数,求a的取值范围10.2014天津卷 14已知函数f(x)若函数yf(x)a|x|恰有4个零点,则实数a的取值范围为_(十) 函数模型及其应用 1.2014北京卷8 加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系pat2btc(a,b,c是常数),图12记录了三次实验的数据根据上述函数模型和实验数据,可以得到最佳加工时间为()图12A3.50分钟 B3.75分钟 C4.00分钟 D4.2
2、5分钟 2.2014陕西卷10 如图12所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切)已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为()图12Ayx3x2x Byx3x23x Cyx3x Dyx3x22x (十一)导数及其运算1.2014陕西卷21 设函数f(x)ln x,mR.(1)当me(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)f(x)零点的个数;(3)若对任意ba0,1恒成立,求m的取值范围2.2014安徽卷20设函数f(x)1(1a)xx2x3,其中a0.(1)讨论f(x)在其定义域上的单调性;(2)当x0,1时,求f(x)取得
3、最大值和最小值时的x的值3.2014北京卷20已知函数f(x)2x33x.(1)求f(x)在区间2,1上的最大值;(2)若过点P(1,t)存在3条直线与曲线yf(x)相切,求t的取值范围;(3)问过点A(1,2),B(2,10),C(0,2)分别存在几条直线与曲线yf(x)相切?(只需写出结论)4.2014福建卷 22已知函数f(x)exax(a为常数)的图像与y轴交于点A,曲线yf(x)在点A处的切线斜率为1.(1)求a的值及函数f(x)的极值;(2)证明:当x0时,x2ex;(3)证明:对任意给定的正数c,总存在x0,使得当x(x0,)时,恒有xcex.5.2014广东卷11曲线y5ex3
4、在点(0,2)处的切线方程为_6.2014江苏卷11 在平面直角坐标系xOy中,若曲线yax2(a,b为常数)过点P(2,5),且该曲线在点P处的切线与直线7x2y30平行,则ab的值是_7.2014江苏卷23已知函数f0(x)(x0),设fn(x)为fn1(x)的导数,nN*.(1)求2f1f2的值;(2)证明:对任意的nN*,等式都成立8.2014全国新课标卷21 设函数f(x)aln xx2bx(a1),曲线yf(x)在点(1,f(1)处的切线斜率为0.(1)求b;(2)若存在x01,使得f(x0),求a的取值范围9. 2014山东卷 20设函数f(x)aln x,其中a为常数(1)若a
5、0,求曲线yf(x)在点(1,f(1)处的切线方程;(2)讨论函数f(x)的单调性 10.2014四川卷 19 设等差数列an的公差为d,点(an,bn)在函数f(x)2x的图像上(nN*)(1)证明:数列bn为等比数列;(2)若a11,函数f(x)的图像在点(a2,b2)处的切线在x轴上的截距为2,求数列anb的前n项和Sn.11. 2014天津卷 19已知函数f(x)x2ax3(a0),xR.(1)求f(x)的单调区间和极值;(2)若对于任意的x1(2,),都存在x2(1,),使得f(x1)f(x2)1,求a的取值范围(十二) 导数的应用1. 2014四川卷 21 已知函数f(x)exax
6、2bx1,其中a,bR,e2.718 28为自然对数的底数(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间0,1上的最小值;(2)若f(1)0,函数f(x)在区间(0,1)内有零点,证明:e2a1.2. 2014安徽卷 15若直线l与曲线C满足下列两个条件:(i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在点P附近位于直线l的两侧则称直线l在点P处“切过”曲线C.下列命题正确的是_(写出所有正确命题的编号)直线l:y0在点P(0,0)处“切过”曲线C:yx3;直线l:x1在点P(1,0)处“切过”曲线C:y(x1)2;直线l:yx在点P(0,0)处“切过”曲线C:ys
7、in x;直线l:yx在点P(0,0)处“切过”曲线C:ytan x;直线l:yx1在点P(1,0)处“切过”曲线C:yln x.3. 2014安徽卷 20 设函数f(x)1(1a)xx2x3,其中a0.(1)讨论f(x)在其定义域上的单调性;(2)当x0,1时,求f(x)取得最大值和最小值时的x的值4. 2014北京卷 20 已知函数f(x)2x33x.(1)求f(x)在区间2,1上的最大值;(2)若过点P(1,t)存在3条直线与曲线yf(x)相切,求t的取值范围;(3)问过点A(1,2),B(2,10),C(0,2)分别存在几条直线与曲线yf(x)相切?(只需写出结论)5. 2014福建卷
8、 22已知函数f(x)exax(a为常数)的图像与y轴交于点A,曲线yf(x)在点A处的切线斜率为1.(1)求a的值及函数f(x)的极值;(2)证明:当x0时,x2ex;(3)证明:对任意给定的正数c,总存在x0,使得当x(x0,)时,恒有xcex.8. 2014湖南卷 9若0x1x21,则()Aex2ex1ln x2ln x1Bex2ex1ln x2ln x1Cx2ex1x1ex2Dx2ex1x1ex29. 2014湖南卷 21 已知函数f(x)xcos xsin x1(x0)(1)求f(x)的单调区间;(2)记xi为f(x)的从小到大的第i(iN*)个零点,证明:对一切nN*,有.版权所有:高考资源网()版权所有:高考资源网()