1、中数网 2005年普通高等学校招生全国统一考试(北京卷)数学(文史类) 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷 1至2页,第II卷3至9页,共150分。考试时间120分钟。考试结束,将本试卷和答题卡一并交回。 第I卷(选择题共40分) 注意事项: 1答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。 2每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试卷上。 一、本大题共8小题每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项. (1)设集合M=x| x1,P=x| x2
2、1,则下列关系中正确的是 (A)MP (B)PM (C)MP ( D)(2)为了得到函数的图象,只需把函数上所有点 (A)向右平移3个单位长度,再向下平移1个单位长度 (B)向左平移3个单位长度,再向下平移1个单位长度 (C)向右平移3个单位长度,再向上平移1个单位长度 (D)向左平移3个单位长度,再向上平移1个单位长度(3)“m=”是“直线(m+2)x+3my+1=0与直线(m2)x+(m+2)y3=0相互垂直”的 (A)充分必要条件 (B)充分而不必要条件 (C)必要而不充分条件 (D)既不充分也不必要条件 (4)若,且,则向量与的夹角为 (A)30 (B)60 (C)120 (D)150
3、 (5)从原点向圆 x2y212y27=0作两条切线,则这两条切线的夹角的大小为 (A) (B) (C) (D)(6)对任意的锐角,下列不等关系中正确的是 (A)sin(+)sin+sin (B)sin(+)cos+cos (C)cos(+)sinsin (D)cos(+)0;. 当f(x)=lgx时,上述结论中正确结论的序号是 .(14)已知n次多项式, 如果在一种算法中,计算(k2,3,4,n)的值需要k1次乘法,计算的值共需要9次运算(6次乘法,3次加法),那么计算的值共需要 次运算 下面给出一种减少运算次数的算法:(k0, 1,2,n1)利用该算法,计算的值共需要6次运算,计算的值共需
4、要 次运算三、解答题:本大题共6小题,共80分。解答应写出文字说明,证明过程或演算步骤。(15)(本小题共12分) 已知=2,求 (I)的值; (II)的值(16)(本小题共14分) 如图, 在直三棱柱ABCA1B1C1中,AC3,BC4,AA14,点D是AB的中点, (I)求证:ACBC1; (II)求证:AC 1/平面CDB1; (III)求异面直线 AC1与 B1C所成角的余弦值 (17)数列an的前n项和为Sn,且a1=1,n=1,2,3,求 (I)a2,a3,a4的值及数列an的通项公式; (II)的值.(18)(本小题共13分) 甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙
5、每次击中目标的概率, (I)甲恰好击中目标的2次的概率; (II)乙至少击中目标2次的概率; (III)求乙恰好比甲多击中目标2次的概率(19)(本小题共14分) 已知函数f(x)=x33x29xa, (I)求f(x)的单调递减区间;(II)若f(x)在区间2,2上的最大值为20,求它在该区间上的最小值(20)(本小题共14分) 如图,直线 l1:ykx(k0)与直线l2:ykx之间的阴影区域(不含边界)记为W,其左半部分记为W1,右半部分记为W2(I)分别用不等式组表示W1和W2;(II)若区域W中的动点P(x,y)到l1,l2的距离之积等于d2,求点P的轨迹C的方程;(III)设不过原点O
6、的直线l与(II)中的曲线C相交于M1,M2两点,且与l1,l2分别交于M3,M4两点求证OM1M2的重心与OM3M4的重心重合2005年普通高等学校招生全国统一考试数学(文史类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分) (1) C (2)A (3)B (4)C (5)B (6)D (7)C (8)B二、填空题(本大题共6小题,每小题5分,共30分)(9)x=1;(1, 0) (10)20 (11)1, 2)(2, +) (12) (13) (14)65;20三、解答题(本大题共6小题,共80分) (15)(共12分)解:(I) tan=2, ;所以=;(II)由(
7、I), tan=, 所以=. (16)(共14分)(I)直三棱柱ABCA1B1C1,底面三边长AC=3,BC=4AB=5, ACBC,且BC1在平面ABC内的射影为BC, ACBC1;(II)设CB1与C1B的交点为E,连结DE, D是AB的中点,E是BC1的中点, DE/AC1, DE平面CDB1,AC1平面CDB1, AC1/平面CDB1;(III) DE/AC1, CED为AC1与B1C所成的角,在CED中,ED=AC 1=,CD=AB=,CE=CB1=2, , 异面直线 AC1与 B1C所成角的余弦值.(17)(共13分)解:(I)由a1=1,n=1,2,3,得,由(n2),得(n2)
8、,又a2=,所以an=(n2), 数列an的通项公式为;(II)由(I)可知是首项为,公比为项数为n的等比数列, =. (18)(共13分)解:(I)甲恰好击中目标的2次的概率为 (II)乙至少击中目标2次的概率为; (III)设乙恰好比甲多击中目标2次为事件A,乙恰击中目标2次且甲恰击中目标0次为事件B1,乙恰击中目标3次且甲恰击中目标1次为事件B2,则AB1B2,B1,B2为互斥事件=. 所以,乙恰好比甲多击中目标2次的概率为.(19)(共14分) 解:(I) f (x)3x26x9令f (x)0,解得x3, 所以函数f(x)的单调递减区间为(,1),(3,) (II)因为f(2)8121
9、8a=2a,f(2)81218a22a, 所以f(2)f(2)因为在(1,3)上f (x)0,所以f(x)在1, 2上单调递增,又由于f(x)在2,1上单调递减,因此f(2)和f(1)分别是f(x)在区间2,2上的最大值和最小值,于是有 22a20,解得 a2 故f(x)=x33x29x2,因此f(1)13927, 即函数f(x)在区间2,2上的最小值为7(20)(共14分)解:(I)W1=(x, y)| kxykx, x0,W2=(x, y)| kxy0, (II)直线l1:kxy0,直线l2:kxy0,由题意得 , 即, 由P(x, y)W,知k2x2y20, 所以 ,即, 所以动点P的轨
10、迹C的方程为; (III)当直线l与x轴垂直时,可设直线l的方程为xa(a0)由于直线l,曲线C关于x轴对称,且l1与l2关于x轴对称,于是M1M2,M3M4的中点坐标都为(a,0),所以OM1M2,OM3M4的重心坐标都为(a,0),即它们的重心重合, 当直线l1与x轴不垂直时,设直线l的方程为y=mx+n(n0) 由,得 由直线l与曲线C有两个不同交点,可知k2m20且=0设M1,M2的坐标分别为(x1, y1),(x2, y2),则, , 设M3,M4的坐标分别为(x3, y3),(x4, y4), 由得从而,所以y3+y4=m(x3+x4)+2nm(x1+x2)+2ny1+y2, 于是OM1M2的重心与OM3M4的重心也重合第 8 页 共 8 页