1、 高考小题自检区 第二版块 自检09:等差、等比数列的基本运算A组 高考真题集中训练栏目导航考点1 等差数列考点2 等比数列考点3 等差、等比数列的综合等差数列1(2017全国卷)记 Sn 为等差数列an的前 n 项和若 a4a524,S648,则an的公差为()A1 B2C4 D8解析:设an的公差为 d,则由a4a524,S648,得a13da14d24,6a1652 d48,解得 d4.故选 CC 2(2016全国乙卷)已知等差数列an前9项的和为27,a108,则a100()A100 B99C98D97解析:法一:an是等差数列,设其公差为 d,S992(a1a9)9a527,a53又
2、a108,a14d3,a19d8,a11,d1.a100a199d199198.故选 CC 法二:an是等差数列,S992(a1a9)9a527,a53在等差数列an中,a5,a10,a15,a100 成等差数列,且公差 da10a5835故 a100a5(201)598.故选 C3(2015全国卷)已知an是公差为 1 的等差数列,Sn 为an的前 n 项和,若 S84S4,则 a10()A172B192C10 D12解析:公差为 1,S88a1881218a128,S44a16S84S4,8a1284(4a16),解得 a112,a10a19d129192.故选 BB 4(2015全国卷)
3、设Sn是等差数列an的前n项和,若a1a3a53,则S5()A5B7C9D11解析:法一:a1a52a3,a1a3a53a33,a31,S55a1a525a35,故选 A法二:a1a3a5a1(a12d)(a14d)3a16d3.a12d1.S55a1542 d5(a12d)5,故选 AA 5(2017全国卷)等差数列an的前 n 项和为 Sn,a33,S410,则k1n1Sk_解析:设等差数列an的公差为 d,则由a3a12d3,S44a1432 d10,得a11,d1.2nn1Snn1nn121nn12,1Sn2nn121n 1n1k1n1Sk 1S1 1S2 1S3 1Sn2112121
4、313141n 1n121 1n1 2nn1等比数列1(2017全国卷)我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯()A1 盏B3 盏C5 盏D9 盏解析:设塔的顶层的灯数为 a1,七层塔的总灯数为 S7,公比为 q,则由题意知 S7381,q2,S7a11q71qa112712381,解得 a13.故选 BB 2(2015全国卷)已知等比数列an满足 a114,a3a54(a41),则 a2()A2 B1C12D18解析:
5、a3a5a24,a3a54(a41),a244(a41),a244a440,a42.又q3a4a12148,q2,a2a1q14212,故选 CC 3(2013全国卷)等比数列an的前 n 项和为 Sn.已知 S3a210a1,a59,则 a1()A13B13C19D19解析:由题知 q1,则 S3a11q31qa1q10a1,得 q29,又 a5a1q49,则a119,故选 CC 4(2017全国卷)设等比数列an满足a1a21,a1a33,则a4_8 解析:设等比数列an的公比为q,a1a21,a1a33,a1(1q)1,a1(1q2)3.,得1q3,q2 a11,a4a1q31(2)38
6、5(2015全国卷)在数列an中,a12,an12an,Sn为an的前n项和若Sn126,则n_解析:a12,an12an,数列an是首项为 2,公比为 2 的等比数列又Sn126,212n12 126,n66 6(2016全国乙卷)设等比数列an满足a1a310,a2a45,则a1a2an的最大值为_解析:设等比数列an的公比为 q,则由 a1a310,a2a4q(a1a3)5,知 q12又 a1a1q210,a1864 故 a1a2anan1q12(n1)23n12n1n223nn22 n22n22 72n记 tn22 7n2 12(n27n)12n722498,结合 nN*可知 n3 或
7、 4 时,t 有最大值 6又 y2t 为增函数,从而 a1a2an 的最大值为 2664等差、等比数列的综合1(2017全国卷)等差数列an的首项为 1,公差不为 0.若 a2,a3,a6 成等比数列,则an前 6 项的和为()A24 B3C3 D8解析:由已知条件可得 a11,d0,由 a23a2a6 可得(12d)2(1d)(15d),解得 d2所以 S661652224.故选 AA 2(2014全国卷)等差数列an的公差为 2,若 a2,a4,a8 成等比数列,则an的前 n 项和 Sn()An(n1)B n(n1)Cnn12Dnn12解析:因为 a2,a4,a8 成等比数列,所以 a24a2a8,所以(a16)2(a12)(a114),解得 a12.所以 Snna1nn12dn(n1)故选 AA 3数列an满足an1(1)nan2n1,则an的前60项和为()A3 690B3 660C1 845D1 830解析:不妨令 a11,根据题意,得 a22,a3a5a71,a46,a610,所以当 n 为奇数时,an1,当 n 为偶数时构成以 a22 为首项,以 4 为公差的等差数列所以前 60 项和为 S603023030301241 830D B组 高考对接限时训练(九)谢谢观看