收藏 分享(赏)

宜宾专版2018届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第14讲全等三角形精讲试题.doc

上传人:a**** 文档编号:460627 上传时间:2025-12-07 格式:DOC 页数:7 大小:268KB
下载 相关 举报
宜宾专版2018届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第14讲全等三角形精讲试题.doc_第1页
第1页 / 共7页
宜宾专版2018届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第14讲全等三角形精讲试题.doc_第2页
第2页 / 共7页
宜宾专版2018届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第14讲全等三角形精讲试题.doc_第3页
第3页 / 共7页
宜宾专版2018届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第14讲全等三角形精讲试题.doc_第4页
第4页 / 共7页
宜宾专版2018届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第14讲全等三角形精讲试题.doc_第5页
第5页 / 共7页
宜宾专版2018届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第14讲全等三角形精讲试题.doc_第6页
第6页 / 共7页
宜宾专版2018届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第14讲全等三角形精讲试题.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第十四讲 全等三角形,考标完全解读)考点考试内容考试要求全等三角形全等三角形的定义了解全等三角形的性质理解全等三角形的判定掌握,感受宜宾中考)1(2014宜宾中考)如图,已知:在AFD和CEB中,点A,E,F,C在同一直线上,AECF,BD,ADBC.求证:ADBC.证明:ADBC,AC.AECF,AEEFCFEF,即AFCE.在ADF和CBE中,ADFCBE(A.A.S.),ADBC.2(2015宜宾中考)如图,ACDC,BCEC,ACDBCE,求证:AD.证明:ACDBCE,ACDACEBCEACE,即ACBDCE.又ACDC,BCEC,ACBDCE,AD.3(2016宜宾中考)如图,已知

2、CABDBA,CBDDAC.求证:BCAD.证明:CABDBA,CBDDAC,DABCBA.在ADB与BCA中,ADBBCA(A.S.A.),BCAD.4(2017宜宾中考)如图,已知点B,E,C,F在同一条直线上,ABDE,AD,ACDF.求证:BECF.证明:ACDF,ACBF,在ABC和DEF中,ABCDEF(A.A.S.);BCEF,BCCEEFCE,即BECF.,核心知识梳理)全等三角形的概念1能够_完全重合_的两个三角形叫做全等三角形三角形全等的判定2一般三角形全等的判定定理:(1)边角边定理:有两边和它们的_夹角_对应相等的两个三角形全等;(可简写成“边角边”或“S.A.S.”)

3、(2)角边角定理:有两角和它们的_夹边_对应相等的两个三角形全等;(可简写成“角边角”或“A.S.A.”)(3)角角边定理:有两角和_一边_对应相等的两个三角形全等;(可简写成“角角边”或“A.A.S.”)(4)边边边定理:有_三边_对应相等的两个三角形全等(可简写成“边边边”或“S.S.S.”)3直角三角形全等的判定:对于特殊的直角三角形,除以上判定以外,还有H.L.定理(斜边、直角边定理):有_斜边_和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“H.L.”)4三角形全等的证明思路,重点难点解析)全等三角形的判定与性质【例1】(2017苏州中考)如图,AB,AEBE,

4、点D在AC边上,12,AE和BD相交于点O.(1)求证:AECBED;(2)若142,求BDE的度数【解析】(1)根据全等三角形的判定即可判断AECBED;(2)由(1)可知:ECED,CBDE,根据等腰三角形的性质即可知C的度数,从而可求出BDE的度数【答案】解:(1)AE和BD相交于点O,AODBOE.在AOD和BOE中,AB,BEO2.又12,1BEO,AECBED.在AEC和BED中,AECBED(A.S.A.)(2)AECBED,ECED,CBDE.在EDC中,ECED,142,CEDC69,BDEC69.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属

5、于中等题型【针对训练】1(贵阳中考)如图,点E,F在AC上,ADBC,DFBE,要使ADFCBE,还需要添加的一个条件是(B) AAC BDBCADBC DDFBE2(2017温州中考)如图,在五边形ABCDE中,BCDEDC90,BCED,ACAD.(1)求证:ABCAED;(2)当B140时,求BAE的度数解:(1)ACAD,ACDADC,又BCDEDC90,ACBADE.在ABC和AED中,ABCAED(S.A.S.);(2)当B140时,E140.又BCDEDC90,五边形ABCDE中,BAE540140290280.全等三角形的应用【例2】如图,工人师傅要检查人字梁的B和C是否相等,

6、但他手边没有量角器,只有一个刻度尺他是这样操作的:分别在BA和CA上取BECG;在BC上取BDCF;量出DE的长a m,FG的长b m.如果ab,则说明B和C是相等的,他的这种做法合理吗?为什么?【解析】给出的三组相等线段都分布在BDE,CFG中,判断他们全等,条件充分,利用全等的性质容易得出BC.【答案】解:这种做法合理理由:在BDE和CFG中,BDECFG(S.S.S.),BC.【点评】本题考查了全等三角形的应用;判断两个角相等,或者边相等,可以把他们分别放到两个可能全等的三角形中,围绕全等找判断全等的条件【针对训练】3工人师傅常用角尺平分一个任意角做法如下:如图,AOB是一个任意角,在边

7、OA,OB上分别取OMON,移动角尺,使角尺两边相同的刻度分别与M,N重合过角尺顶点C的射线OC即是AOB的平分线这种做法的依据是_SS.S.证明COMCON_直角三角形的判定与应用【例3】如图,ABAD,ABCADC90,EF过点C,BEEF于E,DFEF于F,BEDF. 求证:RtBCERtDCF.【解析】连接BD,根据等腰三角形的性质和判定,求出BCDC,根据直角三角形全等的判定定理HL推出两三角形全等即可【答案】证明:连接BD,ABAD,ABDADB,ABCADC90,CBDCDB,BCDC,BEEF,DFEF,EF90,在RtBCE和RtDCF中,RtBCERtDCF(H.L.)【点

8、评】本题考查了等腰三角形的性质和判定,直角三角形全等的判定的应用,主要培养学生运用定理进行推理的能力,题型较好,难度适中【针对训练】4如图所示,CD90,可使用“H.L.”判定RtABC与RtABD全等,则应添加一个条件是_ACAD(答案不唯一)_,(第4题图),(第5题图)5如图,AC与BD相交于点O,DAAC,DBBC,ACBD.说明ODOC成立的理由证明:DAAC,DBBC,AB90,在RtADC和RtBCD中,RtADCRtBCD(H.L.),BDCACD,ODOC.,当堂过关检测)1.用直尺和圆规作一个角等于已知角,如图,能得出AOBAOB的依据是(A)AS.S.S. BS.A.S.

9、 CA.S.A. DA.A.S.2如图,在PAB中,PAPB,M,N,K分别是PA,PB,AB上的点,且AMBK,BNAK,若MKN42,则P的度数为(C)A44 B66 C96 D92,(第2题图),(第3题图)3小涛在家打扫卫生,一不小心把一块三角形的玻璃台板打碎了,如图,如果要配一块完全一样的玻璃,至少要带_2_块,序号分别是_3,4_4(2017齐齐哈尔中考)如图,在ABC中,ADBC于D,BDAD,DGDC,E,F分别是BG,AC的中点(1)求证:DEDF,DEDF;(2)连结EF,若AC10,求EF的长解:(1)ADBC,ADBADC90,在BDG和ADC中,BDGADC,BGAC,BGDC.ADBADC90,E,F分别是BG,AC的中点,DEBGEG,DFACAF,DEDF,EDGEGD,FDAFAD,EDGFDA90,DEDF;(2)AC10,DEDF5,由勾股定理得,EF5.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1