1、直接证明与间接证明、数学归纳法考试要求1.了解直接证明的两种基本方法分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法反证法;了解反证法的思考过程和特点.3.了解数学归纳法的原理.4.能用数学归纳法证明一些简单的数学命题1直接证明(1)综合法定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法(2)分析法定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止的证明方法2间接证明反证法一般地,假设原命题不成立(即在原命题的
2、条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法3数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)归纳奠基:证明当n取第一个值n0(n0N*)时命题成立;(2)归纳递推:假设nk(kn0,kN*)时命题成立,证明当nk1时命题也成立只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立上述证明方法叫做数学归纳法一、易错易误辨析(正确的打“”,错误的打“”)(1)用数学归纳法证明问题时,第一步是验证当n1时结论成立()(2)综合法是直接证明,分析法是间接证明()(3)分析法是从要证明的结论出发
3、,逐步寻找使结论成立的充要条件()(4)用反证法证明结论“ab”时,应假设“aQ BPQCPQ,只需P2Q2,即2a1322a132,只需a213a42a213a40.因为4240成立,所以PQ成立故选A4已知数列an满足an1anan1,nN*,且a12,则a2 ,a3 ,a4 ,猜想an .345n1易得a23,a34,a45,故猜想ann1. 考点一综合法的应用 掌握综合法证明问题的思路(1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性(2)综合法的逻
4、辑依据是三段论式的演绎推理典例1设a,b,c均为正数,且abc1.证明:(1)abbcac;(2)1.证明(1)由a2b22ab,b2c22bc,c2a22ac,得a2b2c2abbcca,由题设得(abc)21,即a2b2c22ab2bc2ca1,所以3(abbcca)1,即abbcca.(2)因为a,b,c均为正数,b2a,c2b,a2c,故(abc)2(abc),即abc,所以1.母题变迁本例的条件不变,证明a2b2c2.证明因为abc1,所以1(abc)2a2b2c22ab2bc2ac,因为2aba2b2,2bcb2c2,2aca2c2,所以2ab2bc2ac2(a2b2c2),所以1
5、a2b2c22(a2b2c2),即a2b2c2.点评:(1)不等式的证明常借助基本不等式,注意其使用的前提条件“一正、二定、三相等”;(2) 应用重要不等式a2b22ab放缩时要注意待证不等式的方向性在ABC中,角A,B,C的对边分别为a,b,c,已知sin Asin Bsin Bsin Ccos 2B1.(1)求证:a,b,c成等差数列;(2)若C,求证:5a3b.证明(1)由已知得sin Asin Bsin Bsin C2sin2B,因为sin B0,所以sin Asin C2sin B,由正弦定理,得ac2b,即a,b,c成等差数列(2)由C,c2ba及余弦定理得(2ba)2a2b2ab
6、,即有5ab3b20,即5a3b. 考点二分析法的应用 分析法证明问题的思路及适用范围利用分析法证明问题,先从结论入手,由此逐步推出保证此结论成立的充分条件;当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法典例2已知ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.求证:.证明要证,即证3,也就是1,只需证c(bc)a(ab)(ab)(bc),需证c2a2acb2,又ABC三内角A,B,C成等差数列,故B60,由余弦定理,得b2c2a22accos 60,即b2c2a2
7、ac,故c2a2acb2成立于是原等式成立点评:(1)用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)”“即证”“只需证”等,逐步分析,直到一个明显成立的结论(2)证明较复杂的问题时,可以采用两头凑的办法,如本例中,通过分析法找出与结论等价(或充分)的中间结论“c2a2acb2”,然后通过综合法证明这个中间结论,从而使原命题得证若a,b(1,),证明.证明要证,只需证()2()2,只需证ab1ab0,即证(a1)(1b)0.因为a1,b1,所以a10,1b0,即(a1)(1b)0成立,所以原不等式成立 考点三反证法的应用 用反证法证明问题的步骤典例3设a0,b0,且ab.证明:(1
8、)ab2;(2)a2a2与b2b0,b0,得ab1.(1)由基本不等式及ab1,有ab22,即ab2.(2)假设a2a2与b2b2同时成立,则由a2a0,得0a1;同理,0b1,从而ab1,这与ab1矛盾故a2a2与b2b2不可能同时成立点评:(1)当一个命题的结论是以“至多”“至少”“唯一”或以否定形式出现时,宜用反证法来证(2)在使用反证法证明数学命题时,反设必须恰当,如“都是”的否定是“不都是”“至少一个”的否定是“不存在”等等差数列an的前n项和为Sn,a11,S393.(1)求数列an的通项公式an与前n项和Sn;(2)设bn(nN*),求证:数列bn中任意不同的三项都不可能成为等比
9、数列解(1)设等差数列an的公差为d.由已知得所以d2,故an2n1,Snn(n)(nN*)(2)证明:由(1)得bnn,假设数列bn中存在三项bp,bq,br(p,q,rN*,且互不相等)成等比数列,则bbpbr.即(q)2(p)(r),所以(q2pr)(2qpr)0,因为p,q,rN*,所以所以pr,(pr)20,所以pr,与pr矛盾,所以数列bn中任意不同的三项都不可能成等比数列 考点四数学归纳法的应用 1应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法(2)用数学归纳法证明不等式的关键是由nk成立,推证nk1时也
10、成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法、构造函数法等证明方法2利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题,其基本模式是“归纳猜想证明”,即先由合情推理发现结论,然后经逻辑推理论证结论的正确性典例4(2019浙江高考)设等差数列an的前n项和为Sn,a34,a4S3.数列bn满足:对每个nN*,Snbn,Sn1bn,Sn2bn成等比数列(1)求数列an,bn的通项公式;(2)记cn,nN*,证明:c1c2cn2,nN*.解(1)设数列an的公差为d,由题意得解得a10,d2,an2n2,nN*.Snn2n,nN*.数列bn满足:对每个nN*,
11、Snbn,Sn1bn,Sn2bn成等比数列,(Sn1bn)2(Snbn)(Sn2bn),解得bn(SSnSn2),即bnn2n,nN*.(2)证明:cn,nN*,用数学归纳法证明:当n1时,c102,不等式成立;假设当nk(kN*)时不等式成立,即c1c2ck2,则当nk1时,c1c2ckck122222()2,即nk1时,不等式也成立由得c1c2cn2,nN*.点评:用数学归纳法证明与n有关的不等式,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用均值不等式、不等式的性质等放缩技巧,使问题得以简化已知f (n)1,g(n),nN*.(1)当n1,2,3时,试比较f (n)与g(n)的大小关系;(2)猜想f (n)与g(n)的大小关系,并给出证明解(1)当n1时,f (1)1,g(1)1,所以f (1)g(1);当n2时,f (2),g(2),所以f (2)g(2);当n3时,f (3),g(3),所以f (3)g(3)(2)由(1)猜想,f (n)g(n),用数学归纳法证明当n1,2,3时,不等式显然成立假设当nk(k3,kN*)时不等式成立,即1,则当nk1时,f (k1)f (k).因为0,所以f (k1)g(k1)由可知,对一切nN*,都有f (n)g(n)成立