1、选修2-3第一章1.21.21第2课时 一、选择题1用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中奇数的个数为()A36B30C40D60答案A解析奇数的个位数字为1、3或5,偶数的个位数字为2、4.故奇数有A36个2(2014辽宁理,6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A144 B120 C72 D24答案D解析就座3人占据3张椅子,在其余3张椅子形成的四个空位中,任意选择3个,插入3张坐人的椅子,共有A24种不同坐法,故选D.35个人排成一排,如果甲必须站在排头或排尾,而乙不能站在排头或排尾,那么不同站法总数为()A18 B36 C48 D60
2、答案B解析甲在排头或排尾站法有A种,再让乙在中间3个位置选一个,有A种站法,其余3人有A种站法,故共有AAA36种站法46人站成一排,甲、乙、丙3人必须站在一起的所有排列的总数为()AA B3A CAA D4!3!答案D解析甲、乙、丙三人站在一起有A种站法,把3人作为一个元素与其他3人排列有A种,共有AA种故选D.5甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面不同的安排方法共有()A20种 B30种 C40种 D60种答案A解析分三类:甲在周一,共有A种排法;甲在周二,共有A种排法;甲在周三,共有A种排法;AAA
3、20.6由数字0、1、2、3、4、5可以组成能被5整除,且无重复数字的不同的五位数有()A(2AA)个 B(2AA)个C2A个 D5A个答案A解析能被5整除,则个位须为5或0,有2A个,但其中个位是5的含有0在首位的排法有A个,故共有(2AA)个点评可用直接法求解:个位数字是0时有A种;个位数字是5时,首位应用1、2、3、4中选1个,故有4A种,共有A4A个二、填空题7三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为_答案24解析“每人两边都有空位”是说三个人不相邻,且不能坐两头,可视作5个空位和3个人满足上述两要求的一个排列,只要将3个人插入5个空位形成的4个空档中即可有
4、A24种不同坐法8在所有无重复数字的四位数中,千位上的数字比个位上的数字大2的数共有_个答案448解析千位数字比个位数字大2,有8种可能,即(2,0),(3,1)(9,7)前一个数为千位数字,后一个数为个位数字其余两位无任何限制共有8A448个92014年某地举行博物展,某单位将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该单位展出这5件作品不同的方案有_种(用数字作答)答案24解析将2件书法作品排列,方法数为2种,然后将其作为1件作品与标志性建筑设计作品共同排列有2种排法,对于其
5、每一种排法,在其形成的3个空位中选2个插入2件绘画作品,故共有不同展出方案:22A24种三、解答题10一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前四个节目要有舞蹈节目,有多少种排法?解析(1)先从5个演唱节目中选两个排在首尾两个位置有A种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A种排法,故共有不同排法AA14400种(2)先不考虑排列要求,有A种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有AA种排法,所以前四个节目要有舞蹈节
6、目的排法有(AAA)37440种一、选择题11用0、1、2、3、4、5组成没有重复数字的6位数,其中个位数字小于十位数字的六位数共有()A300个 B464个 C600个 D720个答案A解析解法1:确定最高位有A种不同方法确定万位、千位、百位,从剩下的5个数字中取3个排列,共有A种不同的方法,剩下两个数字,把大的排在十位上即可,由分步乘法计数原理知,共有AA300(个)解法2:由于个位数字大于十位数字与个位数字小于十位数字的应各占一半,故有AA300(个)12(2014郑州网校期中联考)从6个人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且
7、这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有()A300种 B240种 C144种 D96种答案B解析先从除甲、乙外的4人中选取1人去巴黎,再从其余5人中选3人去伦敦、悉尼、莫斯科,共有不同选择方案,AA240种13(2014四川理,6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A192种 B216种 C240种 D288种答案B解析分两类:最左端排甲有A120种不同的排法,最左端排乙,由于甲不能排在最右端,所以有CA96种不同的排法,由加法原理可得满足条件的排法共有12096216种14某地为了迎接2013年城运会,某大楼安装了5个彩灯,它们闪亮
8、的顺序不固定每个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒如果要实现所有不同的闪烁,那么需要的时间至少是()A1205秒 B1200秒C1195秒 D1190秒答案C解析由题意每次闪烁共5秒,所有不同的闪烁为A个,相邻两个闪烁的时间间隔为5秒,因此需要的时间至少是5A(A1)51195秒点评本题情景新颖,考查了排列知识在生活中的应用以及运用数学知识解决实际问题的能力、分析解决问题的能力二、填空题156人站成一排,甲、乙、丙3个人不能都站在一起的排法
9、种数为_答案576解析“不能都站在一起”与“都站在一起”是对立事件,由间接法可得AAA576.点评不能都站在一起,与都不相邻应区分16.如图是一个正方体纸盒的展开图,若把1,2,3,4,5,6分别填入小正方形后,按虚线折成正方体,则所得到的正方体相对面上的两个数的和都相等的概率是_答案解析6个数任意填入6个小正方形中有6!720种方法;将6个数分三组(1,6),(2,5),(3,4),每组中的两个数填入一对面中,共有不同填法A22248种,故所求概率P.三、解答题17用0、1、2、3、4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是
10、3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数解析(1)各个数位上的数字允许重复,故由分步乘法计数原理知,共有455552500(个)(2)方法一:先排万位,从1,2,3,4中任取一个有A种填法,其余四个位置四个数字共有A种,故共有AA96(个)方法二:先排0,从个、十、百、千位中任选一个位置将0填入有A种方法,其余四个数字全排有A种方法,故共有AA96(个)(3)构成3的倍数的三位数,各个位上数字之和是3的倍数,按取0和不取0分类:取0,从1和4中取一个数,再取2进行排,先填百位A,其余任排有A,故有2AA种不取0,则只能取3,从1或4中再任取一个,再取2然后进行全排为2A,所以共
11、有2AA2A81220(个)(4)考虑特殊位置个位和万位,先填个位,从1、3中选一个填入个位有A种填法,然后从剩余3个非0数中选一个填入万位,有A种填法,包含0在内还有3个数在中间三位置上全排列,排列数为A,故共有AAA36(个)184个男同学,3个女同学站成一排(1)3个女同学必须相邻,有多少种不同的排法?(2)任何两个女同学彼此不相邻,有多少种不同的排法?(3)三位女同学站在中间三个位置上的不同排法有多少种?(4)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?(5)若3个女生身高互不相等,女同学从左到右按高矮顺序排,有多少种不同的排法?解析(1)3个女同学是特殊元素,她们排在一起,共
12、有A种排法;我们可视排好的女同学为一整体,再与男同学排队,这时是5个元素的全排列,应有A种排法,由分步计数乘法原理,有AA720种不同排法(2)先将男生排好,共有A种排法,再在这4个男生之间及两头的5个空档中插入3个女生有A种方案,故符合条件的排法共有AA1440种不同排法(3)三位女同学站在中间三个位置上的不同排法有AA144种(4)先排甲、乙和丙3人以外的其他4人,有A种排法;由于甲、乙要相邻,故再把甲、乙排好,有A种排法;最后把排好的甲、乙这个整体与丙分别插入原先排好的4人的空档中有A种排法这样,总共有AAA960种不同排法(5)从7个位置中选出4个位置把男生排好,则有A种排法然后再在余下的3个空位置中排女生,由于女生要按身体高矮排列,故仅有一种排法这样总共有A840种不同排法