1、第一章基础知识测试本试卷分第卷(选择题)和第卷(非选择题)两部分。时间120分钟,满分150分。第卷(选择题共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1下列哪种工作不能使用抽样方法进行()A测定一批炮弹的射程B测定海洋水域的某种微生物的含量C高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D检测某学校全体高三学生的身高和体重的情况答案D解析抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A、B、C都是从总体中抽取部分个体进行检验,选项D是检测全体学生的身体状况,所以,要对全体学生的身体都进行检验,而不
2、能采取抽样的方法2从一堆苹果中任取10只,称得它们的质量如下(单位:克):12512012210513011411695120134则样本数据落在114.5,124.5)内的频率为()A0.2B0.3C0.4D0.5答案C解析该题考查频率的计算公式属基础题在114.5,124.5范围内的频数m4,样本容量n10,所求频率0.4.3某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查;一次数学月考中,某班有12人在100分以上,30人在90100分,12人低于90分,现从中抽取9人了解有关情况;运动会工作人员为参加4100 m接力的6支队安排跑道就这三个事件,
3、恰当的抽样方法分别为()A分层抽样、分层抽样、简单随机抽样B系统抽样、系统抽样、简单随机抽样C分层抽样、简单随机抽样、简单随机抽样D系统抽样、分层抽样、简单随机抽样答案D解析中人数较多,可采用系统抽样;适合用分层抽样;适合于简单随机抽样. 4某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为235,现用分层抽样方法,抽出一个容量为n的样本,样本中A型号的产品有16件,则此样本的容量n等于()A100B200C90D80答案D解析,得n80. 5一组观察值4,3,5,6出现的次数分别为3,2,4,2,则样本平均值约为()A4.55B4.5C12.5D1.64答案A解析样本平均值为4.55
4、.6对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()125202333124489455577889500114796178A.46,45,56B46,45,53C47,45,56D45,47,53答案A解析本题考查了茎叶图的应用及其样本的中位数、众数、极差等数字特征,由茎叶图可知,中位数为46,众数为45,极差为681256.在求一组数据的中位数时,一定不要忘记先将这些数据排序再判断7某市场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示已知9时至10时的销售额为2.5万元,则11时至1
5、2时的销售额为()A6万元B8万元C10万元D12万元答案C解析设11时至12时的销售额为x万元,因为9时至10时的销售额为2.5万元,依题意得,得x10万元8为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x(cm)174176176176178儿子身高y(cm)175175176177177则y对x的线性回归方程为()Ayx1Byx1Cy88xDy176答案C解析本题主要考查线性回归方程以及运算求解能力利用公式求系数176,176,b,ab88,所以y88x.9(2014山东理,7)为了研究某药品的疗效,选取若干名志愿者进行临床试验所有志愿者的舒张压数据(单位:
6、kPa)的分组区间为12,13),13,14),14,15),15,16),16,17,将其按从左到右的顺序分别编号为第一组,第二组,第五组下图是根据试验数据制成的频率分布直方图已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A6B8C12D18答案C解析本题考查频率分布直方图的识读第一、二两组的频率为0.240.160.4志愿者的总人数为50(人)第三组的人数为:500.3618(人)有疗效的人数为18612(人)频率分布直方图中频率与频数的关系是解题关键10在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生大规模群体感染的标志为“连续10天
7、,每天新增疑似病例不超过7人”根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A甲地:总体均值为3,中位数为4B乙地:总体均值为1,总体方差大于0C丙地:中位数为2,众数为3D丁地:总体均值为2,总体方差为3答案D解析解法一:A中,若连续10天甲地新增疑似病例数据分别为x1x2x3x40,x5x6x7x8x94,x1010,此时总体均值为3,中位数为4,但第10天新增疑似病例超过7,故A错;B中,若x1x2x3x4x5x6x7x8x90,x1010,此时,总体均值为1,方差大于0,但第10天新增疑似病例超过7,故B错;C中,若x1x2x3x40,x51,x63,x73,
8、x83,x98,x109,此时,中位数为2,众数为3,但第9天、第10天新增疑似病例超过7,故C错,故选D.解法二:由于甲地总体均值为3,中位数为4,即中间天数(第5、6天)人数的平均数为4,因此后面的人数可以大于7,故甲地不符合;乙地中总体均值为1,因此这10天的感染人数总和为10,又由于方差大于0,故这10天中不可能每天都是1,可以有一天大于7,故乙地不符合丙地中位数为2,众数为3,3出现的最多,并且可以出现8,故丙地不符合第卷(非选择题共100分)二、填空题(本大题共5个小题,每小题5分,共25分,将正确答案填在题中横线上)11某班级有52名学生,要从中抽取10名学生调查学习情况,若采用
9、系统抽样方法,则此班内每个学生被抽到的机会是_答案解析采用系统抽样,要先剔除2名学生,确定间隔k5,但是每名学生被剔除的机会一样,故虽然剔除了2名学生,这52名学生中每名学生被抽到的机会仍相等,且均为.12一个社会调查机构就某地居民的月收入调查10 000人,并根据所得数据画了样本的频率分布直方图(如图所示)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在2 500,3 000)(元)月收入段应抽出_人答案25解析样本数据在2 500,3 000内的频率为0.00055000.25.故应抽出1000.2525(人)13青年歌
10、手大奖赛共有10名选手参赛,并请了7名评委,如图所示的茎叶图是7名评委给参加最后决赛的两位选手甲、乙评定的成绩,去掉一个最高分和一个最低分后,甲、乙选手剩余数据的平均成绩分别为_.甲乙8 5798 6 5 484 4 4 6 7293答案84.2,85解析甲的成绩是75,78,84,85,86,88,92,去掉一个最高分92和一个最低分75后,则甲的平均成绩为84.2;乙的成绩是79,84,84,84,86,87,93,去掉一个最高分93和一个最低分79后,则乙的平均成绩为85.14某地区有农民、工人、知识分子家庭共计2 004家,其中农民家庭1 600户,工人家庭303户现要从中抽出容量为4
11、0的样本进行年人均收入的调查,则在整个抽样过程中,可以用到下列抽样方法中的_(将你认为正确的选项的序号都填上)简单随机抽样系统抽样分层抽样答案解析显然要用分层抽样由于抽样比不是整数,先剔除4人,要用简单随机抽样借助随机数表,各类家庭中抽样可用系统抽样15某地为了了解该地区10 000户家庭的用电情况,采用分层抽样的方法抽取了500户家庭的月平均用电量,并根据这500户家庭的月平均用电量画出频率分布直方图(如图所示),则该地区10 000户家庭中月平均用电度数在70,80的家庭有_户答案1 200解析由频率分布直方图可得,月平均用电度数在70,80的家庭占总体的12%,所以共有10 00012%
12、1 200户三、解答题(本大题共6个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16(本小题满分12分)某公司为了了解一年内用水情况,抽查了10天的用水量如下表:天数1112212吨数22384041445095根据表中提供的信息解答下面问题:(1)这10天中,该公司每天用水的平均数是多少?(2)这10天中,该公司每天用水的中位数是多少?(3)你认为应该使用平均数和中位数中哪一个数来描述该公司每天的用水量?解析(1)51(t)(2)中位数42.5(t)(3)用中位数42.5t来描述该公司的每天用水量较合适因为平均数受极端数据22,95的影响较大17(本小题满分12分)某学校青年志愿
13、者协会共有250名成员,其中高一学生88名,高二学生112名,高三学生50人,为了了解志愿者活动与学校学习之间的关系,需要抽取50名学生进行调查试确定抽样方法,并写出过程. 解析分三种情况抽样:(1)简单随机抽样,每位同学被抽取的概率为.(2)系统抽样,将250名同学编号001250,编号间隔5个,将其分成50个小组,每个小组抽取1人,相邻组抽取的编号也间隔5.(3)分层抽样,高一抽取18个,高二抽取22个,高三抽取10个18(本小题满分12分)国家队教练为了选拔一名篮球队员入队,分别对甲、乙两名球员的10场同级别比赛进行了跟踪,将他们的每场得分记录如下表:场次12345678910甲4023
14、2935355442485610乙2015194493442184551(1)求甲、乙球员得分的中位数和极差(2)甲球员得分在区间30,50)的频率是多少?(3)如果你是教练,你将选拔哪位球员入队?请说明理由解析 (1)由题表画出茎叶图,如下图所示.甲乙09015899320553482042456451甲球员得分的中位数为37.5,极差为561046;乙球员得分的中位数为27,极差为51942.(2)甲球员得分在区间30,50)的频率为.(3)如果我是教练,我将选拔甲球员入队,原因如下:甲球员得分集中在茎叶图的下方,且叶的分布是“单峰”,说明甲球员得分平均数接近40,甲球员得分的中位数为37
15、.5分,且状态稳定;而乙球员得分较分散,其得分的中位数为27分,低于甲球员,平均得分也小于甲球员19(本小题满分12分)为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示)分组频率1.00,1.05)1.05,1.10)1.10,1.15)1.15,1.20)1.20,1.25)1.25,1.30)(1)在频率分布表中填写相应的频率;(2)估计数据落在1.15,1.30)中的概率为多少;(3)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,
16、其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数解析(1)根据频率分布直方图可知,频率组距故可得下表:分组频率1.00,1.05)0.051.05,1.10)0.201.10,1.15)0.281.15,1.20)0.301.20,1.25)0.151.25,1.30)0.02(2)0.300.150.020.47,所以数据落在1.15,1.30)中的概率约为0.47.(3)2000.所以水库中鱼的总条数约为2000条20(本小题满分13分)两台机床同时生产直径为10的零件,为了检验产品质量,质量检验员从两台机床的产品中各抽出4件进行测量,结果如下:机床甲109.81010.2机
17、床乙10.1109.910如果你是质量检验员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求?解析甲(109.81010.2)10,乙(10.1109.910)10,由于甲乙,因此,平均直径反映不出两台机床生产的零件的质量优劣s(1010)2(9.810)2(1010)2(10.210)20.02,s(10.110)2(1010)2(9.910)2(1010)20.005.这说明乙机床生产出的零件直径波动小,因此,从产品质量稳定性的角度考虑,乙机床生产的零件质量更符合要求21(本小题满分14分)某个体服装店经营某种服装在某周内获纯利y(元)与该周每天销售这种服装件数x之间有如下一组数据:x3456789y66697381899091(1)求,;(2)画出散点图,并用最小二乘法求出y关于x的线性回归方程;(3)估计每天销售10件这种服装时可获纯利润多少元?解析(1)由已知得(3456789)6.(66697381899091)79.86.(2)散点图如图所示,280,iyi3 487.设回归直线方程为ybxa,则b4.75,ab79.864.75651.36.所求回归直线方程为y4.75x51.36.(3)当x10时,y98.86,估计每天销售这种服装10件可获纯利98.86元