1、第一章综合素质检测时间120分钟,满分150分。一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1(2014湖南益阳市箴言中学模拟)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:y与x负相关且2.347x6.423; y与x负相关且3.476x5.648;y与x正相关且5.437x8.493;y与x正相关且4.326x4.578.其中一定不正确的结论的序号是()ABC D答案D解析y与x正(或负)相关时,线性回归直线方程yx中,x的系数0(或s,乙稳定,是假命题;是真命题;数据落在11
2、4.5,124.5)内的有:120,122,116,120共4个,故所求概率为0.4,是真命题6已知x与y之间的一组数据:x0123y1357则y与x的线性回归方程yx必过()A(2,2)点 B(1.5,0)点C(1,2)点 D(1.5,4)点答案D解析计算得1.5,4,由于回归直线一定过(,)点,所以必过(1.5,4)点7利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k5.024,那么就有把握认为“X和Y有关系”的百分比为()p(K2k)0.500.400.250.150.10k0.4550.7081.3232.0722.706p(K
3、2k)0.050.0250.0100.0050.001k3.845.0246.6357.87910.83A.25% B75%C2.5% D97.5%答案D解析查表可得K25.024.因此有97.5%的把握认为“x和y有关系”8下列说法正确的有()最小二乘法指的是把各个离差加起来作为总离差,并使之达到最小值的方法;最小二乘法是指把各离差的平方和作为总离差,并使之达到最小值的方法;线性回归就是由样本点去寻找一条直线,贴近这些样本点的数学方法;因为由任何一组观测值都可以求得一个回归直线方程,所以没有必要进行相关性检验A1个 B2个C3个 D4个答案B解析最小二乘法是指把各离差的平方和作为总离差,并使
4、之达到最小值的方法,(2)是正确的;线性回归就是由样本点去寻找一条直线,贴近这些样本点的数学方法,这是线性回归的本质,(3)也是正确的9某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x具有相关关系,回归方程为0.66x1.562,若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均收入的百分比约为()A83% B72%C67% D66%答案A解析当7.675时,x9.262,所以0.829,故选A.10下面是调查某地区男女中学生是否喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从下图可以看出()A性别与是否喜欢理科无关
5、B女生中喜欢理科的比为80%C男生比女生喜欢理科的可能性大些D男生中喜欢理科的比为60%答案C解析从图中可以看出,男生喜欢理科的比例为60%,而女生比例为仅为20%,这两个比例差别较大,说明性别与是否喜欢理科是有关系的,男生比女生喜欢理科的可能性更大一些11(2014云南景洪市一中期末)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女合计爱好402060不爱好203050总计6050110由K2,得K27.8.附表:P(K2k)0.0500.0100.001k3.8416.63510.828参照附表,得到的正确的结论是()A在犯错误的概率不超过0.1%的前提下,认为
6、“爱好该项运动与性别有关”B在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C有99%以上的把握认为“爱好该项运动与性别有关”D有99%以上的把握认为“爱好该项运动与性别无关”答案C12以下关于线性回归的判断,正确的个数是()若散点图中所有点都在一条直线附近,则这条直线为回归直线;散点图中的绝大多数都线性相关,个别特殊点不影响线性回归,如图中的A,B,C点;已知直线方程为0.50x0.81,则x25时,y的估计值为11.69;回归直线方程的意义是它反映了样本整体的变化趋势A0B1C2D3答案D解析能使所有数据点都在它附近的直线不止一条,而据回归直线的定义知,只有按最小二乘法
7、求得回归系数,得到的直线bx才是回归直线,不对;正确;将x25代入0.50x0.81,得11.69,正确;正确,故选D.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上)13某镇居民20092013年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:年份20092010201120122013收入x11.512.11313.315支出Y6.88.89.81012根据统计资料,居民家庭平均收入的中位数是_,家庭年平均收入与年平均支出有_线性相关关系(填“正”或“负”)答案13正解析找中位数时,将样本数据按大小顺序排列后奇数个时中间一个是中
8、位数,而偶数个时须取中间两数的平均数,由统计资料可以看出,年平均收入增多时,年平均支出也增多,因此两者正相关14有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:冷漠不冷漠总计多看电视6842110少看电视203858总计8880168则在犯错误的概率不超过_的前提下认为多看电视与人变冷漠有关系答案0.001解析可计算K2的观测值k11.37710.828.15在2013年春节期间,某市物价部门,对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x元和销售量y件之间的一组数据如下表所示:价格x99.51010.511销售量y1110865通过分析,发现
9、销售量y对商品的价格x具有线性相关关系,则销售量y对商品的价格x的回归直线方程为_答案3.2x40解析iyi392,10,8,(xi)22.5,代入公式,得3.2,所以,40,故回归直线方程为3.2x40.16某小卖部为了了解热茶销售量y(杯)与气温x()之间的关系,随机统计了某4天卖出的热茶的杯数与当天气温,并制作了对照表:气温()1813101杯数24343864由表中数据算得线性回归方程bxa中的b2,预测当气温为5时,热茶销售量为_杯(已知回归系数b,ab)答案70解析根据表格中的数据可求得(1813101)10,(24343864)40.ab40(2)1060,2x60,当x5时,2
10、(5)6070.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17(本题满分12分)考察黄烟经过培养液处理与是否跟发生青花病的关系调查了457株黄烟,得到下表中数据,请根据数据作统计分析.培养液处理未处理合计青花病25210235无青花病80142222合计105352457附:K2p(K2k)0.050.010.0050.001k3.8416.6357.87910.83解析根据公式K241.61,由于41.6110.828,说明有99.9%的把握认为黄烟经过培养液处理与是否跟发生青花病是有关系的18(本题满分12分)某工业部门进行一项研究,分析该部门的产量与
11、生产费用之间的关系,从该部门内随机抽选了10个企业为样本,有如下资料:产量x(千件)生产费用(千元)40150421404816055170651507916288185100165120190140185(1)计算x与y的相关系数;(2)对这两个变量之间是否线性相关进行检验;(3)设回归方程为x,求回归系数解析(1)根据数据可得:77.7,165.7,x70 903,y277 119,xiyi132 938,所以r0.808,即x与y之间的相关系数r0.808;(2)因为r0.75,所以可认为x与y之间具有线性相关关系;(3)0.398,134.8.19(本题满分12分)(2014安徽文,1
12、7)某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:0,2,(2,4,(4,6,(6,8,(8,10,(10,12估计该校学生每周平均体育运动时间超过4个小时的概率. (3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每
13、周平均体育运动时间与性别有关”附:K2P(K2k0)0.100.050.0100.005k02.7063.8416.6357.879解析(1)30090,所以应收集90位女生的样本数据(2)由频率分布直方图得12(0.1000.025)0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有3000.75225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表男生女生总计每周平均
14、体育运动时间不超过4小时453075每周平均体育运动时间超过4小时16560225总计21090300综合列联表可算得K24.7623.841.所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”20(本题满分12分)在一段时间内,某种商品的价格x元和需求量y件之间的一组数据为价格x1416182022需求量y1210753求出y对x的回归直线方程,并说明拟合效果的好坏解析(1416182022)18,(1210753)7.4,x1421621822022221 660,y122102725232327,xiyi14121610187205223620,1.15.7.41.15
15、1828.1.回归直线方程为1.15x28.1.列出残差表为:yii00.30.40.10.2yi4.62.60.42.44.4 (yii)20.3, (yi)253.2,R210.994.R20.994,因而拟合效果较好21(本题满分12分)(2014安徽程集中学期中)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性(1)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”
16、与性别有关?非体育迷体育迷合计男女合计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率附:K2P(K2k)0.050.01k3.8416.635解析(1)由频率分布直方图可知,在抽取的100人中,“体育迷”为25人,从而完成22列联表如下:非体育迷体育迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得K23.030.因为3.0303.841,所以我们没有理由认为“体育迷”与性别有关(2)由频率分布直方图可知,“超级体育迷”为5人,从而一切可能结果所
17、组成的集合为(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)其中ai表示男性,i1,2,3,bj表示女性,j1,2.由10个基本事件组成,而且这些基本事件的出现是等可能的用A表示“任选2人中,至少有1人是女性”这一事件,则A(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),事件A由7个基本事件组成,因而P(A).点评本题考查了频率分布直方图,独立性检验,古典概型,解决这类题目的关键是对题意准确理解22(本题满分14分)(20
18、14济南模拟) 为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令的赞成人数如下表:月收入15,25)25,35)35,45)45,55)55,65)65,75)频数510151055赞成人数488521将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收人族”(1)根据已知条件完成下面的22列联表,有多大的把握认为赞不赞成楼市限购令与收入高低有关?已知:K2,当K22.706时,有90%的把握判定赞不赞成楼市限购令与收入高低有关;当K23.841时,有95%的把握判定赞不赞成楼市限购令与收入高低
19、有关;当K26.635时,有99%的把握判定赞不赞成楼市限购令与收入高低有关.非高收入族高收入族总计赞成不赞成总计(2)现从月收入在55,65)的人群中随机抽取两人,求所抽取的两人中至少一人赞成楼市限购令的概率解析(1)非高收入族高收入族总计赞成25328不赞成15722总计401050K23.43,故有90%的把握认为楼市限购令与收入高低有关;(2)设月收入在55,65)的5人的编号为a,b,c,d,e,其中a,b为赞成楼市限购令的人,从5人中抽取两人的方法数有ab,ac,ad,ae,bc,bd,be,cd,ce,de共10种,其中ab,ac,ad,ae,bc,bd,be为有利事件数,因此所求概率P.