收藏 分享(赏)

《原创》2013年高考二轮专题复习之模型讲解 渡河模型.doc

上传人:高**** 文档编号:439917 上传时间:2024-05-28 格式:DOC 页数:6 大小:157.50KB
下载 相关 举报
《原创》2013年高考二轮专题复习之模型讲解 渡河模型.doc_第1页
第1页 / 共6页
《原创》2013年高考二轮专题复习之模型讲解 渡河模型.doc_第2页
第2页 / 共6页
《原创》2013年高考二轮专题复习之模型讲解 渡河模型.doc_第3页
第3页 / 共6页
《原创》2013年高考二轮专题复习之模型讲解 渡河模型.doc_第4页
第4页 / 共6页
《原创》2013年高考二轮专题复习之模型讲解 渡河模型.doc_第5页
第5页 / 共6页
《原创》2013年高考二轮专题复习之模型讲解 渡河模型.doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2013年高考二轮专题复习之模型讲解渡河模型【模型概述】在运动的合成与分解中,如何判断物体的合运动和分运动是首要问题,判断合运动的有效方法是看见的运动就是合运动。合运动的分解从理论上说可以是任意的,但一般按运动的实际效果进行分解。小船渡河和斜拉船等问题是常见的运动的合成与分解的典型问题【模型讲解】一、速度的分解要从实际情况出发例1. 如图1所示,人用绳子通过定滑轮以不变的速度拉水平面上的物体A,当绳与水平方向成角时,求物体A的速度。图1解法一(分解法):本题的关键是正确地确定物体A的两个分运动。物体A的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短。绳长缩短的速

2、度即等于;二是随着绳以定滑轮为圆心的摆动,它不改变绳长,只改变角度的值。这样就可以将按图示方向进行分解。所以及实际上就是的两个分速度,如图1所示,由此可得。解法二(微元法):要求船在该位置的速率即为瞬时速率,需从该时刻起取一小段时间来求它的平均速率,当这一小段时间趋于零时,该平均速率就为所求速率。设船在角位置经t时间向左行驶x距离,滑轮右侧的绳长缩短L,如图2所示,当绳与水平方向的角度变化很小时,ABC可近似看做是一直角三角形,因而有,两边同除以t得:即收绳速率,因此船的速率为:图2总结:“微元法”。可设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位移是怎样的,得出位移分解的图示,再

3、从中找到对应的速度分解的图示,进而求出牵连物体间速度大小的关系。解法三(能量转化法):由题意可知:人对绳子做功等于绳子对物体所做的功。人对绳子的拉力为F,则对绳子做功的功率为;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为,因为所以。评点:在上述问题中,若不对物体A的运动认真分析,就很容易得出的错误结果;当物体A向左移动,将逐渐变大,逐渐变大,虽然人做匀速运动,但物体A却在做变速运动。总结:解题流程:选取合适的连结点(该点必须能明显地体现出参与了某个分运动);确定该点合速度方向(物体的实际速度为合速度)且速度方向始终不变;确定该点合速度的实际运动效果从而依据平行

4、四边形定则确定分速度方向;作出速度分解的示意图,寻找速度关系。二、拉力为变力,求解做功要正确理解例2. 如图3所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m的重物,开始时人在滑轮的正下方,绳下端A点离滑轮的距离为H。人由静止拉着绳向右移动,当绳下端到B点位置时,人的速度为v,绳与水平面夹角为。问在这个过程中,人对重物做了多少功?图3解析:人移动时对绳的拉力不是恒力,重物不是做匀速运动也不是做匀变速运动,故无法用求对重物做的功,需从动能定理的角度来分析求解。当绳下端由A点移到B点时,重物上升的高度为:重力做功的数值为:当绳在B点实际水平速度为v时,v可以分解为沿绳斜向下的分速度和绕定滑轮逆时

5、针转动的分速度,其中沿绳斜向下的分速度和重物上升速度的大小是一致的,从图中可看出:以重物为研究对象,根据动能定理得:【实际应用】小船渡河两种情况:船速大于水速;船速小于水速。两种极值:渡河最小位移;渡河最短时间。例3. 一条宽度为L的河,水流速度为,已知船在静水中速度为,那么:(1)怎样渡河时间最短?(2)若,怎样渡河位移最小?(3)若,怎样渡河船漂下的距离最短?解析:(1)小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是水流的运动,船的实际运动为合运动。如图4所示。设船头斜向上游与河岸成任意角。这时船速在垂直于河岸方向的速度分量为,渡河所需要的时间为,可以看出

6、:L、v船一定时,t随sin增大而减小;当时,(最大)。所以,船头与河岸垂直。图4(2)如图5所示,渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度v的方向与河岸垂直,即使沿河岸方向的速度分量等于0。这时船头应指向河的上游,并与河岸成一定的角度,所以有,即。图5因为,所以只有在时,船才有可能垂直河岸渡河。(3)若,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图6所示,设船头v船与河岸成角。合速度v与河岸成角。可以看出:角越大,船漂下的距离x越短,那么,在什么条件下角最大呢?以v水的矢尖为圆心,v船为半径画圆,当v与圆相切时,角最大,根据图6船头与河岸的夹

7、角应为,船沿河漂下的最短距离为:此时渡河的最短位移:误区:不分条件,认为船位移最小一定是垂直到达对岸;将渡河时间最短与渡河位移最小对应。【模型要点】处理“速度关联类问题”时,必须要明白“分运动”与“合运动”的关系:(1)独立性:一物体同时参与几个分运动时,各分运动独立进行,各自产生效果()互不干扰。(2)同时性:合运动与分运动同时开始、同时进行、同时结束。(3)等效性:合运动是由各分运动共同产生的总运动效果,合运动与各分运动同时发生、同时进行、同时结束,经历相等的时间,合运动与各分运动总的运动效果可以相互替代。功是中学物理中的重要概念,它体现了力对物体的作用在空间上的累积过程,尤其是变力做功中更能体现出其空间积累的过程。所以在处理变力功可采用动能定律、功能原理、图象法、平均法等。【模型演练】小河宽为d,河水中各点水流速度大小与各点到较近河岸边的距离成正比,x是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为,则下列说法中正确的是( )A. 小船渡河的轨迹为曲线B. 小船到达离河岸处,船渡河的速度为C. 小船渡河时的轨迹为直线D. 小船到达离河岸处,船的渡河速度为答案:A

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3