利用导数证明不等式典例(2012辽宁高考)设f(x)lnx1,证明:(1)当x1时,f(x)(x1);(2)当1x3时,f(x)1时,g(x)0.又g(1)0,有g(x)0,即f(x)(x1)(2)记h(x)f(x).由(1)得h(x).令g(x)(x5)3216x.则当1x3时,g(x)3(x5)22160,因此g(x)在(1,3)内是递减函数又由g(1)0,得g(x)0,所以h(x)0,因此h(x)在(1,3)内是递减函数又h(1)0,得h(x)0.于是当1x3时,f(x)0.解:(1)f (x)ex.由x0是f(x)的极值点得f (0)0,所以m1.于是f(x)exln(x1),定义域为(1,),f (x)ex.函数f (x)ex在(1,)上单调递增,且f (0)0,因此当x(1,0)时,f (x)0,所以f(x)在(1,0)上单调递减,在(0,)上单调递增(2)当m2,x(m,)时,ln(xm)ln(x2),故只需证明当m2时,f(x)0.当m2时,函数f (x)ex在(2,)上单调递增又f (1)0,故f (x)0在(2,)上有唯一实根x0,且x0(1,0)当x(2,x0)时,f (x)0,从而当xx0时,f(x)取得最小值由f (x0)0得ex0,ln(x02)x0,故f(x)f(x0)x00,综上,当m2时,f(x)0.