1、第三章三角函数、解三角形第五节两角和与差的正弦、余弦和正切公式课时规范练A组基础对点练1计算:cos()cos sin()sin ()Asin(2)Bsin Ccos(2) Dcos 解析:原式cos()cos .答案:D2(2020成都模拟)计算:sin 20cos 10cos 160sin 10()A. BC D解析:原式sin 20cos 10cos 20sin 10sin(2010)sin 30.答案:D3已知sin,则sin 2()A BC. D解析:因为sin,所以(sin cos ),两边平方得(1sin 2),解得sin 2.答案:A4(2020洛阳质检)已知tan(),则的值
2、为()A. B2C2 D2解析:由tan(),解得tan 3,所以2,故选B.答案:B5(2020大庆模拟)已知 ,都是锐角,且sin cos cos (1sin ),则()A3 B2C3 D2解析:因为sin cos cos (1sin ),所以sin()cos sin,所以,即2.答案:B6已知sin ,sin(),均为锐角,则cos 2()A B1C0 D1解析:由题意知:cos ,cos() .所以cos cos ()cos cos()sin sin().所以cos 22cos21210.答案:C7若tan 4,则sin 2()A. BC. D解析:tan 4,4tan 1tan2 ,
3、sin 22sin cos .答案:D8(2020九校联考)已知5sin 26cos ,(0,),则tan ()A BC. D解析:由题意知,10sin cos 6 cos ,又(0,),sin ,cos ,tan .答案:B9计算:tan 25tan 35tan 25tan 35_解析:原式tan(2535)(1tan 25tan 35)tan 25tan 35(1tan 25tan 35)tan 25tan 35.答案:10cos2sin2_解析:由二倍角公式,得cos2 sin2cos(2).答案:B组素养提升练11(2020肇庆模拟)已知sin 且为第二象限角,则tan()A BC D
4、解析:由题意得cos ,则sin 2,cos 22cos21.tan 2,tan.答案:D12(2020韶关模拟)若tan lg(10a),tan lg a,且,则实数a的值为()A1 BC1或 D1或10解析:因为,所以tan()1,又因为tan lg(10a),tan lg a,所以1,所以lg2alg a0,所以lg a0或lg a1,即a1或.答案:C13(2020吉林大学附中检测)若(,),且3cos 2sin(),则sin 2的值为()A BC D解析:3cos 2sin(),3(cos2sin2)(cos sin ),易知sin cos ,故cos sin ,1sin 2,sin 2,故选D.答案:D14已知,则tan ()A. BC D解析:因为,所以tan 2,于是tan .答案:D15已知tan 2,tan(),则tan 的值为_解析:tan tan()3.答案:316化简:sin 10(tan 5)的值为_解析:原式sin 10()sin 10.答案: