收藏 分享(赏)

2022届高考数学统考一轮复习 第七章 立体几何 第四节 平行关系课时规范练(文含解析)北师大版.doc

上传人:高**** 文档编号:415557 上传时间:2024-05-27 格式:DOC 页数:8 大小:258KB
下载 相关 举报
2022届高考数学统考一轮复习 第七章 立体几何 第四节 平行关系课时规范练(文含解析)北师大版.doc_第1页
第1页 / 共8页
2022届高考数学统考一轮复习 第七章 立体几何 第四节 平行关系课时规范练(文含解析)北师大版.doc_第2页
第2页 / 共8页
2022届高考数学统考一轮复习 第七章 立体几何 第四节 平行关系课时规范练(文含解析)北师大版.doc_第3页
第3页 / 共8页
2022届高考数学统考一轮复习 第七章 立体几何 第四节 平行关系课时规范练(文含解析)北师大版.doc_第4页
第4页 / 共8页
2022届高考数学统考一轮复习 第七章 立体几何 第四节 平行关系课时规范练(文含解析)北师大版.doc_第5页
第5页 / 共8页
2022届高考数学统考一轮复习 第七章 立体几何 第四节 平行关系课时规范练(文含解析)北师大版.doc_第6页
第6页 / 共8页
2022届高考数学统考一轮复习 第七章 立体几何 第四节 平行关系课时规范练(文含解析)北师大版.doc_第7页
第7页 / 共8页
2022届高考数学统考一轮复习 第七章 立体几何 第四节 平行关系课时规范练(文含解析)北师大版.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第七章立体几何第四节平行关系课时规范练A组基础对点练1下列关于线、面的四个命题中不正确的是()A平行于同一平面的两个平面一定平行B平行于同一直线的两条直线一定平行C垂直于同一直线的两条直线一定平行D垂直于同一平面的两条直线一定平行解析:垂直于同一条直线的两条直线不一定平行,可能相交或异面本题可以以正方体为例证明答案:C2若空间四边形ABCD的两条对角线AC,BD的长分别是8,12,过AB的中点E且平行于BD,AC的截面四边形的周长为()A10B20C8 D4解析:设截面四边形为EFGH,F,G,H分别是BC,CD,DA的中点,EFGH4,FGHE6.周长为2(46)20.答案:B3.(2020

2、安徽毛坦厂中学月考)如图,在正方体ABCDA1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A有无数条 B有2条C有1条 D不存在解析:因为平面D1EF与平面ADD1A1有公共点D1,所以两平面有一条过D1的交线l,在平面ADD1A1内与l平行的任意直线都与平面D1EF平行,这样的直线有无数条,故选A.答案:A4(2020陕西西安模拟)在空间四边形ABCD中,E,F分别为AB,AD上的点,且AEEBAFFD14,H,G分别是BC,CD的中点,则 ()ABD平面EFG,且四边形EFGH是平行四边形BEF平面BCD,且四边形EFGH是梯形CHG

3、平面ABD,且四边形EFGH是平行四边形DEH平面ADC,且四边形EFGH是梯形解析:如图,由条件知,EFBD,EFBD,HGBD,HGBD,EFHG,且EFHG,四边形EFGH为梯形EFBD,EF平面BCD,BD平面BCD,EF平面BCD.四边形EFGH为梯形,线段EH与FG的延长线交于一点,EH不平行于平面ADC.故选B.答案:B5(2020蚌埠联考)过三棱柱ABCA1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有()A4条 B6条C8条 D12条解析:作出如图的图形,E,F,G,H是相应棱的中点,故符合条件的直线只能出现在平面EFGH中由此四点可以组成的直线有:E

4、F,GH,FG,EH,GE,HF共有6条答案:B6. (2020郑州市高三质量预测)如图,在直三棱柱ABCABC中,ABC是边长为2的等边三角形,AA4,点E,F,G,H,M分别是边AA,AB,BB,AB,BC的中点,动点P在四边形EFGH的内部运动,并且始终有MP平面ACCA,则动点P的轨迹长度为()A2 B2C2 D4解析:连接MF,FH,MH(图略),因为M,F,H分别为BC,AB,AB的中点,所以MF平面AACC,FH平面AACC,所以平面MFH平面AACC,所以M与线段FH上任意一点的连线都平行于平面AACC,所以点P的运动轨迹是线段FH,其长度为4,故选D.答案:D7(2020四川

5、成都模拟)已知直线a,b和平面,下列说法中正确的是()A若a,b,则abB若a,b,则abC若a,b与所成的角相等,则abD若a,b,则ab解析:对于A,若a,b,则ab或a与b异面,故A错误;对于B,利用线面垂直的性质,可知若a,b,则ab,故B正确;对于C,若a,b与所成的角相等,则a与b相交、平行或异面,故C错误;对于D,由a,b,得a,b之间的位置关系可以是相交、平行或异面,故D错误答案:B8(2020湖南长沙模拟)设a,b,c表示不同直线,表示不同平面,给出下列命题:若ac,bc,则ab;若ab,b,则a;若a,b,则ab;若a,b,则ab.其中真命题的个数是()A1 B2C3 D4

6、解析:对于,根据线线平行的传递性可知是真命题;对于,根据ab,b,可以推出a或a,故是假命题;对于,根据a,b,可以推出a与b平行、相交或异面,故是假命题;对于,根据a,b,可以推出ab或a与b异面,故是假命题所以真命题的个数是1.故选A.答案:A9(2020沧州七校联考)有以下三种说法,其中正确的是 _若直线a与平面相交,则内不存在与a平行的直线;若直线b平面,直线a与直线b垂直,则直线a不可能与平行;若直线a,b满足ab,则a平行于经过b的任何平面解析:对于,若直线a与平面相交,则内不存在与a平行的直线,是真命题,故正确;对于,若直线b平面,直线a与直线b垂直,则直线a可能与平行,故错误;

7、对于,若直线a,b满足ab,则直线a与直线b可能共面,故错误答案:10在四面体ABCD中,M,N分别是ACD,BCD的重心,则四面体的四个面中与MN平行的是_解析:连接AM并延长交CD于E,连接BN并延长交CD于F.由重心的性质可知,E,F重合为一点,且该点为CD的中点E.由,得MNAB.因此MN平面ABC且MN平面ABD.答案:平面ABC和平面ABDB组素养提升练11(2020安徽安庆模拟)在正方体ABCDA1B1C1D1中,M、N、Q分别是棱D1C1、A1D1、BC的中点,点P在BD1上且BPBD1.由以下四个说法:(1)MN平面APC;(2)C1Q平面APC;(3)A、P、M三点共线;(

8、4)平面MNQ平面APC.其中说法正确的是_解析:(1)连接MN,AC,则MNAC,连接AM、CN,易得AM、CN交于点P,即MN平面PAC,所以MN平面APC是错误的;(2)由(1)知M、N在平面APC上,由题易知ANC1Q,所以C1Q平面APC是正确的;(3)由(1)知A,P,M三点共线是正确的;(4)由(1)知MN平面APC,又MN平面MNQ,所以平面MNQ平面APC是错误的答案:(2)(3)12. (2020河南安阳二模)如图所示,在长方体ABCDA1B1C1D1中,ABAD2,AA11.一平面截该长方体,所得截面为OPQRST,其中O,P分别为AD,CD的中点,B1S,则AT_解析:

9、设ATx,A1Ty,则xy1.由题意易知该截面六边形的对边分别平行,即OPSR,OTQR,PQTS,则DOPB1SR.又因为DPDO1,所以B1SB1R,所以A1SC1R.由ATOC1QR,可得,所以C1Qx.由A1TSCQP,可得,所以CQy,所以xyxy1,可得x,y,所以AT.答案:13(2020河南安阳三模)如图所示,四棱锥ABCDE中,BECD,BE平面ABC,CDBE,点F在线段AD上(1)若AF2FD,求证:EF平面ABC;(2)若ABC为等边三角形,CDAC3,求四棱锥ABCDE的体积解析:(1)证明:取线段AC上靠近C的三等分点G,连接BG,GF.因为,则GFCDBE.而GF

10、CD,BECD,故GFBE.故四边形BGFE为平行四边形,故EFBG.因为EF平面ABC,BG平面ABC,故EF平面ABC.(2)因为BE平面ABC,BE平面BCDE,所以平面ABC平面BCDE.所以四棱锥ABCDE的高即为ABC中BC边上的高易求得BC边上的高为3.故四棱锥ABCDE的体积V(23)3.14(2020湖南雅礼中学联考)如图,在等腰梯形ABCD中,已知BCAD,AB,BC1,AD3,BPAD,垂足为P,将ABP沿BP折起,使平面ABP平面PBCD,连接AD,AC,M为棱AD的中点,连接CM.(1)试分别在PB,CD上确定点E,F,使平面MEF平面ABC;(2)求三棱锥APCM的体积解析:(1)E,F分别为BP,CD的中点时,可使平面MEF平面ABC,证明如下:取BP的中点E,CD的中点F,连接ME,MF,EF.M,F分别为AD,CD的中点,MFAC.又E为BP的中点,且四边形PBCD为梯形,EFBC.MFEFF,ACBCC,平面MEF平面ABC.(2)平面ABP平面PBCD,平面ABP平面PBCDBP,APBP,AP平面PBCD,取PD的中点E,连接AE,ME,EC.易知MEAP,PE1,CE1,AP1,VMAPCVEAPC.又VAPCMVMAPC,且VAPCEVEAPC,VAPCMVAPCESPCEAPPEECAP,三棱锥APCM的体积为.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3