1、高考资源网教学目标 1.掌握双曲线的几何性质 2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. 教学重点 双曲线的几何性质 教学难点 高考资源网双曲线的渐近线教学方法 学导式 教具准备 幻灯片、三角板 教学过程 I.复习回顾: 师:上一节,我们学习了双曲线的标准方程,这一节,我们要根据它来研究双曲线的几何性质.同学们可以按照研究椭圆几何性质的方法和步骤,自己推出双曲线的几何性质,然后与课文对照,所以,我们来回顾一下研究椭圆的几何性质的方法与步骤.(略) II.讲授新课: 1.范围:双曲线在不等式xa与xa所表示的区域内. 2.对称性: 双曲线关于每个坐标轴和原点
2、都对称,这时,坐标轴是双曲线的对称轴,原点是双曲线的对称中心,双曲线的对称中心叫双曲线中心. 3.顶点: 双曲线和它的对称轴有两个交点A1(a,0)、A2(a,0),它们叫做双曲线的顶点. 线段A1A2叫双曲线的实轴,它的长等于2a,a叫做双曲线的实半轴长;线段B1B2叫双曲线的虚轴,它的长等于2b, b叫做双曲线的虚半轴长. 4.渐近线 我们把两条直线y=叫做双曲线的渐近线;从图816可以看出,双曲线的各支向外延伸时,与直线y=逐渐接近.“渐近”的证明:先取双曲线在第一象限内的部分进行证明.这一部分的方程可写为y=a).设M(x,y)是它上面的点,N(x,y)是直线y=上与M有相同横坐标的点
3、,则Y=.y=设是点M到直线y=的距离,则a0可得e1;双曲线的离心率越大,它的开口越阔.师:为使大家进一步熟悉双曲线的几何性质,我们来看下面的例题.例1 求双曲线9y216x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.解:把方程化为标准方程.由此可知,实半轴长a=4,虚半轴长b=3.焦点的坐标是(0,5),(0,5).离心率.渐近线方程为,即.说明:此题要求学生认识到第二种形式的标准方程所对应的双曲线性质与课本性质的相同点与不同点.可让学生比较得出(作为练习).III.课堂练习:(1)写出第二种形式的标准方程所对应的双曲线性质.(2)课本P113练习1.课堂小结师:通过本节学习,要求大家熟悉并掌握双曲线的几何性质,尤其是双曲线的渐近线方程及其“渐近”性质的证明,并能简单应用双曲线的几何性质.课后作业习题8.4 1、5、6.板书设计8.4.1 1.范围 4.渐近线 5.离心率 练习1 (1)2.对称性 例1 (2)3.顶点 (3)教学后记