1、普通高中课程标准实验教科书数学必修三苏教版2.3 第7课时 方差与标准差教学目标(1)通过实例是学生理解样本数据的方差、标准差的意义和作用;(2)学会计算数据的方差、标准差;(3)使学生掌握通过合理抽样对总体的稳定性水平作出科学估计的思想教学重点用样本数据的方差和标准差估计总体的方差与标准差教学难点理解样本数据的方差、标准差的意义和作用,形成对数据处理过程进行初步评价的意识教学过程一、问题情境1情境: 有甲、乙两种钢筋,现从中各抽取一个标本(如表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125。甲110120130125120125135125135125乙
2、1151001251301151251251451251452问题:哪种钢筋的质量较好?二、学生活动由图可以看出,乙样本的最小值100低于甲样本的最小值100,最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定. 我们把一组数据的最大值与最小值的差称为极差(range)。由图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定。运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论。 考察样本数据的分散程度的大小,最常用的统计量是方差和标准差。三、建构数学1方差:一般地,设一组样本数据, ,其平均数
3、为,则称为这个样本的方差因为方差与原始数据的单位不同,且平方后可能夸大了离差的程度,我们将方差的算术平方根称为这组数据的标准差2标准差: 标准差也可以刻画数据的稳定程度3方差和标准差的意义: 描述一个样本和总体的波动大小的特征数,标准差大说明波动大四、数学运用1例题:例1甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定。品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8解:甲品种的样本平均数为10,样本方差为 (9.8-10)2 +(9.9-10)2+(10.1-10)
4、2+(10-10)2+(10.2-10)25=0.02.乙品种的样本平均数也为10,样本方差为 (9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)25=0.24因为0.240.02,所以,由这组数据可以认为甲种水稻的产量比较稳定。例2为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换。已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差。天数151180181210211240241270271300301330331360361390灯泡数1111820251672分析:用每一区间内的组中值作
5、为相应日光灯的使用寿命,再求平均寿命。解:各组中值分别为165,195,225,285,315,345,375,由此算得平均数约为1651%+19511%+22518%+25520%+28525%+31516%+3457%+3752%=267.9268(天)这些组中值的方差为1/1001(165-268)2+11(195-268)2+18(225-268)2+20(255-268)2+25(285-268)2+16(315-268)2+7(345-268)2+2(375-268)2=2128.60(天2).故所求的标准差约(天)答:估计这种日光灯的平均使用寿命约为268天,标准差约为46天.2练习:(1)课本第68页练习第1、2、3、4题 ;(2)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为9.5,0.016 ; (3)若给定一组数据,方差为,则,方差是 五、回顾小结:1用样本的数字特征估计总体的数字特征分两类:a) 用样本平均数估计总体平均数。b) 用样本方差、标准差估计总体方差、标准差。样本容量越大,估计就越精确。2方差、标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度六、课外作业:课本第69页第3,5,7题