1、周周练(五)第三章 圆一、选择题(每小题 4 分,共 28 分)1下列说法中,结论错误的是()A直径相等的两个圆是等圆B长度相等的两条弧是等弧C圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧B2如图,点 A,B,C 在O 上,AOB72,则ACB 等于()A28B54C18D36、D3如图,四边形ABCD内接于O,AC平分BAD,则下列结论正确的是()AABADBBCCDC AB ADDBCADCAB4如图,AB 为O 的直径,CD 是O 的弦,ADC26,则CAB 的度数为()A26B74C64D54C5如图,AB 是O 的弦,点 C 在 AB 的延长线上,AB2BC,连接
2、OA,OC.若OAC45,则 tan C 的值为()A1B12C13D2B6如图,四边形 ABCD 内接于O,F 是 CD 上一点,且 DF BC,连接CF 并延长交 AD 的延长线于点 E,连接 AC.若ABC105,BAC25,则E的度数为()A45B50C55D60B7如图,在平面直角坐标系中,点 A 的坐标是(20,0),点 B 的坐标是(16,0),点 C,D 在以 OA 为直径的半圆 M 上,且四边形 OCDB 是平行四边形,则点 C 的坐标为()A(2,8)B(2,6)C(4,6)D(4,8)B二、填空题(每小题 4 分,共 20 分)8如图,在O 中,AB CD,若AOC65,
3、则BOD_659如图,点 A,B,C 在O 上,A40,C20,则B_6010九章算术中有一问题“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”小辉根据原文题意,画出圆材截面图如图所示已知:锯口深为 1 寸,锯道 AB1 尺(1 尺10 寸),则该圆材的直径为_寸2611如图,BD 是O 的弦,点 C 在 BD 上,以 BC 为边作等边ABC,点 A 在圆内,且 AC 恰好经过点 O,其中 BC12,OA8,则 BD 的长为_2012如图,将O 沿弦 AB 折叠,点 C 在 AMB 上,点 D 在 AB 上若ACB70,则ADB_.110三、解答题(共 52 分)13(1
4、2 分)如图,过 ABCD 中的三个顶点 A,B,D 作O,且圆心 O 在 ABCD外部,AB8,ODAB 于点 E,O 的半径为 5,求 ABCD 的面积解:连接 OA,则 OAOD5.ODAB,AB8,AE12 AB4.在 RtOEA中,由勾股定理,得 OE2OA2EA2,OE3,DE2.S ABCDABDE821614(12 分)如图,AB 是O 的直径,点 C,D 在O 上,CEAB 于点 E,DFAB于点 F,且 AEBF,AC 与 BD 相等吗?为什么?解:AC 与 BD 相等理由:如图,连接 OC,OD.OAOB,AEBF,OEOF.CEAB,DFAB,OECOFD90.在 Rt
5、OEC 和 RtOFD 中,OEOF,OCOD,RtOECRtOFD(HL).COEDOF.AC BD,ACBD15(14 分)已知在O 中,弦 ABAC,且 ABAC6,点 D 在O 上,连接AD,BD,CD.(1)如图 1,若 AD 经过圆心 O,求 BD,CD 的长;(2)如图 2,若BAD2DAC,求 BD,CD 的长解:(1)AD 经过圆心 O,ACDABD90.ABAC,且 ABAC6,四边形 ABDC 为正方形,BDCDABAC6(2)如图,连接 BC,OD,ABAC,ABAC6,BC 为O 的直径,BC6 2,CDB90,BOCODO12 BC3 2.BAD2DAC,CAD30
6、,COD60.COD 为等边三角形,CDCODO3 2.在 RtCDB 中,由勾股定理,得 BDBC2CD2 3 616(14 分)(2022呼和浩特)如图,在ABC 中,ABAC,以 AB 为直径的O交 BC 于点 D,交线段 CA 的延长线于点 E,连接 BE.(1)求证:BDCD;(2)若 tan C12,BD4,求 AE 的长解:(1)连接 AD,AB 是O 的直径,ADB90,ABAC,BDDC(2)BDDC4,BCBDDC8,在 RtADC 中,tan CADCD 12,AD12 CD2,ACAD2CD2 2 5.AB 是O 的直径,AEB90,AEBADC90,CC,CDACEB,CECD CBCA,即CE482 5,CE1655,AECEAC655,AE 的长为655