田(长)炳(市)验(五)“主体性优效课堂”导学案设计(高二数学)课题用样本估计总体(三)序号课型新授课上课时间 月 日班级高二教学程序设计问题引领合作探究总结评价作业布置众数、中位数和平均数思考1:甲运动员得分:12,15,20,25,31,30, 36,36,37,39,44,49.乙运动员得分:8,13,14,16,23,26, 28,38,39,51,31,39.以上两组样本数据如何求它们的众数、中位数和平均数? 思考2:在城市居民月均用水量样本数据的频率分布直方图中,众数、中位数和平均数思考3:从居民月均用水量样本数据可知,该样本的众数是2.3,中位数是2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?标准差思考1:在一次射击选拔赛中,甲、乙两名运动员各射击10次,每次命中的环数如下:甲:7 8 7 9 5 4 9 10 7 4乙:9 5 7 8 7 6 8 6 7 7甲、乙两人本次射击的平均成绩分别为多少环?思考2:甲、乙两人射击的平均成绩相等,观察两人成绩的频率分布条形图,你能说明其水平差异在那里吗?反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s表示.假设样本数据x1,x2,xn的平均数为,则标准差的计算公式是:那么标准差的取值范围是什么?标准差为0的样本数据有何特点? .