收藏 分享(赏)

2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc

上传人:高**** 文档编号:362816 上传时间:2024-05-27 格式:DOC 页数:15 大小:428.50KB
下载 相关 举报
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第1页
第1页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第2页
第2页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第3页
第3页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第4页
第4页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第5页
第5页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第6页
第6页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第7页
第7页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第8页
第8页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第9页
第9页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第10页
第10页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第11页
第11页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第12页
第12页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第13页
第13页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第14页
第14页 / 共15页
2020-2021学年新教材数学人教A版选择性必修第一册教师用书:第3章 3-2 3-2-2 双曲线的简单几何性质 WORD版含解析.doc_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
资源描述

1、3.2.2双曲线的简单几何性质学 习 目 标核 心 素 养1.掌握双曲线的简单几何性质(重点)2理解双曲线的渐近线及离心率的意义(难点)1.通过学习双曲线的几何性质,培养学生的直观想象、数学运算核心素养2借助双曲线几何性质的应用及直线与双曲线位置关系的应用,提升学生的直观想象及数学运算、逻辑推理核心素养. (1)复习椭圆的简单几何性质:范围、对称性、顶点、长轴、短轴、离心率等性质(2)用多媒体展示几组焦点在x轴、y轴上开口大小各不相同的双曲线,观察双曲线形状的美(3)根据椭圆的几何性质,那么双曲线有哪些几何性质呢?1双曲线的几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa

2、ya或ya对称性对称轴:坐标轴,对称中心:原点顶点(a,0),(a,0)(0,a),(0,a)轴长实轴长2a,虚轴长2b离心率e1渐近线yxyx思考:渐近线相同的双曲线是同一条双曲线吗?提示渐近线相同的双曲线有无数条,但它们实轴与虚轴的长的比值相同2双曲线的中心和等轴双曲线(1)双曲线的中心双曲线的对称中心叫做双曲线的中心(2)等轴双曲线实轴和虚轴等长的双曲线叫做等轴双曲线,其离心率e.3直线与双曲线的位置关系将ykxm与1联立消去y得一元方程(b2a2k2)x22a2kmxa2(m2b2)0.的取值位置关系交点个数k时相交只有一个交点k且0有两个交点k且0相切只有一个交点k且0相离没有公共点

3、1思考辨析(正确的打“”,错误的打“”)(1)双曲线1的焦点在y轴上()(2)双曲线的离心率越大,双曲线的开口越开阔()(3)以y2x为渐近线的双曲线有2条()提示(1)(2)(3)2若等轴双曲线的一个焦点是F1(6,0),则它的标准方程是()A1B1C1D1B由条件知,等轴双曲线焦点在x轴上,可设方程为1,a2a262,解得a218,故方程为1.3已知点(2,3)在双曲线C:1(a0,b0)上,C的焦距为4,则它的离心率为_2由题意知1,c2a2b24,得a1,b,e2.4双曲线1(a0)的一条渐近线方程为yx,则a_.5双曲线的标准方程为1(a0),双曲线的渐近线方程为yx.又双曲线的一条

4、渐近线方程为yx,a5.根据双曲线方程研究几何性质【例1】求双曲线9y24x236的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程解双曲线的方程化为标准形式是1,a29,b24,a3,b2,c.又双曲线的焦点在x轴上,顶点坐标为(3,0),(3,0),焦点坐标为(,0),(,0),实轴长2a6,虚轴长2b4,离心率e,渐近线方程为yx.1把本例双曲线方程“9y24x236”改为“9y24x236”,它的性质如何?解把方程9y24x236化为标准方程为1,这里a24,b29,c213.焦点在y轴上所以顶点坐标为(0,2),(0,2),焦点坐标为(0,),(0,),实轴长2a4,虚轴长2b

5、6,离心率e,渐近线方程为yxx.2把本例中方程“9y24x236”改为“4x29y24”,它的性质又如何?解方程4x29y24可化为标准方程x21,焦点在y轴上,这里a2,b21,c21.所以顶点坐标为,.焦点坐标为,.实轴长2a,虚轴长2b2.离心率e.渐近线方程为yxx.由双曲线的方程研究几何性质的解题步骤(1)把双曲线方程化为标准形式;(2)由标准方程确定焦点位置,确定a,b的值;(3)由c2a2b2求出c值,从而写出双曲线的几何性质提醒:求性质时一定要注意焦点的位置由几何性质求双曲线的标准方程【例2】求适合下列条件的双曲线的标准方程:(1)焦点在x轴上,虚轴长为8,离心率为;(2)两

6、顶点间的距离是6,两焦点的连线被两顶点和中心四等分;(3)与双曲线1有共同的渐近线,且过点(3,2)思路探究由几何性质求双曲线方程,多是根据题设信息寻找a,b,c,e之间的关系,并通过构造方程获得问题的解(解出a,b或a2,b2的值)解(1)设所求双曲线的标准方程为1(a0,b0),则2b8,e,从而b4,ca,代入c2a2b2,得a29,故双曲线的标准方程为1.(2)由两顶点间的距离是6得2a6,即a3.由两焦点的连线被两顶点和中心四等分可得2c4a12,即c6,于是有b2c2a2623227.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为1或1.(3)法一:当焦点在x轴上时,设双曲线

7、的方程为1.由题意,得解得a2,b24,所以双曲线的方程为1.当焦点在y轴上时,设双曲线的方程为1.由题意,得解得a24,b2(舍去)综上所得,双曲线的方程为1.法二:设所求双曲线方程为(0),将点(3,2)代入得,所以双曲线方程为,即1.1由几何性质求双曲线标准方程的解题思路由双曲线的几何性质求双曲线的标准方程,一般用待定系数法当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线的方程为mx2ny21(mn0)2常见双曲线方程的设法(1)渐近线为yx的双曲线方程可设为(0,m0,n0);如果两条渐近线的方程为AxBy0,那么双曲线的方程可设为A2x2B2

8、y2m(m0,A0,B0)(2)与双曲线1或1(a0,b0)共渐近线的双曲线方程可设为或(0)(3)与双曲线1(a0,b0)离心率相等的双曲线系方程可设为(0)或(0),这是因为由离心率不能确定焦点位置(4)与椭圆1(ab0)共焦点的双曲线系方程可设为1(b2a2)跟进训练1求适合下列条件的双曲线的标准方程:(1)虚轴长为12,离心率为;(2)焦点在x轴上,离心率为,且过点(5,3);(3)顶点间距离为6,渐近线方程为yx.解(1)设双曲线的标准方程为1或1(a0,b0)由题意知2b12,且c2a2b2,b6,c10,a8,双曲线的标准方程为1或1.(2)e,ca,b2c2a2a2.又焦点在x

9、轴上,设双曲线的标准方程为1(a0)把点(5,3)代入方程,解得a216.双曲线的标准方程为1.(3)设以yx为渐近线的双曲线方程为(0),当0时,a24,2a26.当0时,a29,2a261.双曲线的标准方程为1或1.求双曲线的离心率探究问题1双曲线的离心率的范围怎样?对双曲线的形状有什么影响?提示在双曲线方程中,因为ac,所以离心率e(1,),它的大小决定了双曲线的开口大小,e越大,开口就越大2双曲线的离心率与其渐近线斜率有什么关系?提示e当焦点在x轴上时,渐近线斜率为k,则e,当焦点在y轴上时,渐近线斜率为k,则e.【例3】(1)已知双曲线的一条渐近线方程为y2x,则其离心率为_(2)在

10、平面直角坐标系xOy中,若双曲线1(a0,b0)的右焦点F(c,0)到一条渐近线的距离为c,求其离心率的值思路探究(1)利用离心率与的关系,注意要分类讨论焦点的位置(2)利用条件建立齐次方程求解(1)或当焦点在x轴上时,2,这时离心率e.当焦点在y轴上时,2,即,这时离心率e.(2)解因为双曲线的右焦点F(c,0)到渐近线yx,即bxay0的距离为b,所以bc,因此a2c2b2c2c2c2,ac,所以离心率e2.求双曲线离心率的方法(1)若可求得a,c,则直接利用e得解(2)若已知a,b,可直接利用e得解(3)若得到的是关于a,c的齐次方程pc2qacra20(p,q,r为常数,且p0),则转

11、化为关于e的方程pe2qer0求解跟进训练2过双曲线C:1(a0,b0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为_2如图,F1,F2为双曲线C的左、右焦点,将点P的横坐标2a代入1中,得y23b2,不妨令点P的坐标为(2a,b),此时kPF2,得到c(2)a,即双曲线C的离心率e2.直线与双曲线的位置关系探究问题1直线和双曲线只有一个公共点,那么直线和双曲线一定相切吗?提示可能相切,也可能相交,当直线和渐近线平行时,直线和双曲线相交且只有一个交点2过点(0,2)和双曲线1只有一个公共点的直线有几条?提示四条,其中两条切线,两条和渐近线平行的直线【例4

12、】已知双曲线C:x2y21及直线l:ykx1.(1)若直线l与双曲线C有两个不同的交点,求实数k的取值范围;(2)若直线l与双曲线C交于A,B两点,O是坐标原点,且AOB的面积为,求实数k的值思路探究直线方程与双曲线方程联立方程组判断“”与“0”的关系直线与双曲线的位置关系解(1)联立方程组消去y并整理得(1k2)x22kx20.直线与双曲线有两个不同的交点,则解得k,且k1.若l与C有两个不同交点,实数k的取值范围为(,1)(1,1)(1,)(2)设A(x1,y1),B(x2,y2),对于(1)中的方程(1k2)x22kx20,由根与系数的关系,得x1x2,x1x2,|AB|x1x2|.又点

13、O(0,0)到直线ykx1的距离d,SAOB|AB|d,即2k43k20,解得k0或k.实数k的值为或0.直线与双曲线位置关系的判断方法(1)方程思想的应用把直线与双曲线的方程联立成方程组,通过消元后化为ax2bxc0的形式,在a0的情况下考察方程的判别式0时,直线与双曲线有两个不同的公共点0时,直线与双曲线只有一个公共点0,符合题意,所求直线MN的方程为yx,即3x4y50.法二:设M(x1,y1),N(x2,y2),M,N均在双曲线上,两式相减,得yy,.点A平分弦MN,x1x26,y1y22.kMN.经验证,该直线MN存在所求直线MN的方程为y1(x3),即3x4y50.1渐近线是双曲线

14、特有的性质两方程联系密切,把双曲线的标准方程1(a0,b0)右边的常数1换为0,就是渐近线方程反之由渐近线方程axby0变为a2x2b2y2(0),再结合其他条件求得,可得双曲线方程2与双曲线有关的其他几何性质(1)通径:过双曲线1(a0,b0)的焦点作垂直于焦点所在对称轴的直线,该直线被双曲线截得的弦叫做通径,其长度为.(2)焦点三角形:双曲线上的点P与两焦点构成的PF1F2叫做焦点三角形设F1PF2,则焦点三角形的面积S.(3)距离:双曲线1(a0,b0)右支上任意一点M到左焦点的最小距离为ac,到右焦点的最小距离为ca.(4)与双曲线1(a0,b0)的离心率相等的双曲线系方程为(0)或(

15、0)(5)与双曲线1(a0,b0)共焦点的双曲线系方程为1(a2kb2)1已知定点F1(2,0),F2(2,0),在平面内满足下列条件的动点P的轨迹中为双曲线的是()A|PF1|PF2|3B|PF1|PF2|4C|PF1|PF2|5D|PF1|2|PF2|24A|F1F2|4,根据双曲线的定义知选A.2已知双曲线1的右焦点为(3,0),则该双曲线的离心率等于()ABCDC由题意知a259,解得a2,故e.3已知双曲线1(a0,b0)的一个焦点为F(2,0),且离心率为e,则双曲线的标准方程为_1由焦点坐标,知c2,由e,可得a4,所以b2,则双曲线的标准方程为1.4过双曲线x21的左焦点F1,

16、作倾斜角为的直线与双曲线交于A,B两点,则|AB|_.3双曲线的左焦点为(2,0),设A(x1,y1),B(x2,y2),AB方程为y(x2),即xy20,由得8y212y90,则y1y2,y1y2.|AB|3.5直线l与双曲线x24y24相交于A,B两点,若点P(4,1)为线段AB的中点,则直线l的方程是_xy30设A(x1,y1),B(x2,y2),直线AB的斜率为k,易知k存在且k0,则x4y4,x4y4,两式相减,得(x1x2)(x1x2)4(y1y2)(y1y2)0,又点P(4,1)为线段AB的中点,x1x28,y1y22.代入,得(x1x2)(y1y2)0,k1.因此直线l的方程是y11(x4),即xy30.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3