1、学业水平训练sin 75_解析:sin 75sin(9015)cos 15cos(6045)cos 60cos 45sin 60sin 45 .答案:已知cos ,(,2),则cos()_解析:(,2),sin ,cos()cos cossin sin().答案:sin(65x)cos(x20)cos(65x)cos(110x)的值为_解析:sin(65x)cos(x20)cos(65x)cos(110x)sin(65x)sin 90(x20)cos(65x)cos(110x)sin(65x)sin(110x)cos(65x)cos(110x)cos(110x65x)cos 45.答案:cos
2、 15sin 15的值是_解析:cos 15sin 152(sin 15cos 15)2cos(6015)2cos 452.答案:2已知:cos()cos sin()sin ,且180270,则tan 等于_解析:由已知知cos (),即cos .又180270,所以sin ,所以tan .答案:若三角形两内角,满足tan tan 1,则这个三角形是_解析:因为tan tan 1,所以,均为锐角,1,所以cos cos sin sin 0,即cos()0,所以为钝角,()为锐角所以这个三角形为锐角三角形答案:锐角三角形求下列各式的值:(1)sin 61sin 16cos 61cos 16;(2
3、)cos 80cos 20cos 10cos 70.解:(1)原式cos(6116)cos 45.(2)原式cos 80cos 20sin 80sin 20cos(8020)cos 60.已知锐角、满足sin ,cos .(1)求cos()的值;(2)求的值解:(1)sin ,为锐角cos ;cos ,为锐角sin ,cos()cos cos sin sin .(2)cos()cos ()cos cos()sin sin()().、均为锐角,0,.高考水平训练11.若0,6665,所以cos 67cos 66ac.答案:bac已知函数f(x)Acos(),xR,且f().(1)求A的值;(2)
4、设,f(4),f(4),求cos()的值解:(1)由f()得Acos(),即Acos,A2.(2)由(1)知f(x)2cos()由得解得,cos ,sin ,cos()cos cos sin sin .4已知a(cos ,sin ),b(cos ,sin )(0)若kab与akb长度相等(其中k为非零实数),求的值解:kab(kcos ,ksin )(cos ,sin )(kcos cos ,ksin sin ),akb(cos kcos ,sin ksin ),|kab|2(kcos cos )2(ksin sin )2k2cos22kcos cos cos2k2sin22ksin sin sin2k22kcos()1.|akb|2(cos kcos )2(sin ksin )2cos22kcos cos k2cos2sin22ksin sin k2sin2k22kcos()1.又|kab|akb|,|kab|2|akb|2.2kcos()2kcos()又k0,cos()0,即cos()0.又0,0,.