1、课时作业62随机事件的概率一、选择题1一个盒子内装有红球、白球、黑球三种球,其数量分别为3,2,1,从中任取两球,则互斥而不对立的两个事件为(D)A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红球、黑球各一个解析:红球、黑球各取一个,则一定取不到白球,故“至少有一个白球”“红球、黑球各一个”为互斥事件,又任取两球还包含“两个红球”这个事件,故不是对立事件2某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一个产品是正品(甲级)的概率为(C)A0.95 B0.97C0.9
2、2 D0.08解析:记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)1P(B)P(C)15%3%92%0.92.3甲、乙两人下棋,和棋的概率为,乙获胜的概率为,则下列说法正确的是(A)A甲获胜的概率是 B甲不输的概率是C乙输了的概率是 D乙不输的概率是解析:“甲获胜”是“和棋或乙获胜”的对立事件,所以“甲获胜”的概率是P1,故A正确;“乙输了”等于“甲获胜”,其概率为,故C不正确;设事件A为“甲不输”,则A是“甲胜”“和棋”这两个互斥事件的并事件,所以P(A)(或设事件A为“甲不输”,则A是“乙获胜”的对立事件,所以P(A)1),故B
3、不正确;同理,“乙不输”的概率为,故D不正确4根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为(D)A15% B20%C45% D65%解析:因为某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%,现在能为A型病人输血的有O型和A型,故能为病人输血的概率为50%15%65%,故选D.5(2020石家庄教学质量检测)袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸
4、到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为(C)A. B.C. D.解析:由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为,故选C.6随着互联网的普及,网上购物已
5、逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4 500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:满意情况不满意比较满意满意非常满意人数200n2 1001 000根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是(C)A. B.C. D.解析:由题意,n4 5002002 1001 0001 200,所以对网上购物“比较满意”或“满意”的人数为1 2002 1003 300,由古典概型概率公式可得对网上购物“比较满意”或“满意”的概率为.7对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图
6、根据标准,产品长度在区间20,25)上的为一等品,在区间15,20)和区间25,30)上的为二等品,在区间10,15)和30,35上的为三等品用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为(D)A0.09 B0.20C0.25 D0.45解析:设25,30)上的频率为x,由所有矩形面积之和为1,即x(0.020.040.030.06)51,得25,30)上的频率为0.25.所以产品为二等品的概率为0.0450.250.45.8袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.从以上五张卡片中任取两张,则这两张卡片颜色不同且标号之和小于4的
7、概率为(C)A. B.C. D.解析:从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2,其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1蓝1,红1蓝2,红2蓝1,故所求的概率为P,故选C.9掷一枚均匀的骰子两次,将向上的点数分别记为a,b,设mab,则(D)A事件“m2”的概率为B事件“m11”的概率为C事件“m2”与“m3”互为对立事件D事件“m是奇数”与“ab”互为互斥事件解析:事件“m2”的概率为,故A中结论错误;事件“m11”的概率为,故B中结论错误;事件“m2”与“m2”互为对立
8、事件,故C中结论错误;ab时,m为偶数,故事件“m是奇数”与“ab”互为互斥事件,故D中结论正确故选D.二、填空题10如果事件A与B是互斥事件,且事件AB发生的概率是0.64,事件B发生的概率是事件A发生的概率的3倍,则事件A发生的概率为0.16.解析:事件A与B是互斥事件,P(AB)P(A)P(B)0.64,又P(B)3P(A),P(A)0.16.11掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A发生的概率为.解析:掷一个骰子的试验有6种可能结果,依题意P(A),P(B),所以P()1P(B)1,显然A与互斥,从而P(A)P(A)P(
9、).12“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9 600人,则可估计该地区对“键盘侠”持反对态度的有6_912人解析:在随机抽取的50人中,持反对态度的频率为1,则可估计该地区对“键盘侠”持反对态度的有9 6006 912(人)13从集合1,2,3,4,5,6,7,8,9中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为.解析:从集合1,2,3,4,5,6,7,8,9中任取两个不同的数,有n36(种)情形,其中
10、一个数是另一个数的3倍的事件有1,3,2,6,3,9,共3种情形,所以由古典概型的概率计算公式可得其概率是P.三、解答题14海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区ABC数量50150100(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率解:(1)A,B,C三个地区商品的总数量为50150100300,抽样比为,所以样本中包含三个地区的个体数量分别是501,1503,1
11、002.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:A,B1,A,B2,A,B3,A,C1,A,C2,B1,B2,B1,B3,B1,C1,B1,C2,B2,B3,B2,C1,B2,C2,B3,C1,B3,C2,C1,C2,共15个每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:B1,B2,B1,B3,B2,B3,C1,C2,共4个所以P(D),即这2件商品来自相同地区的
12、概率为.15一个盒子里装有三张卡片,分别标记为数字1,2,3,这三张卡片除标记的数字外完全相同随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足abc”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率解:由题意知,(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3)
13、,(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种(1)设“抽取的卡片上的数字满足abc”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种所以P(A).因此,“抽取的卡片上的数字满足abc”的概率为.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件包括(1,1,1),(2,2,2),(3,3,3),共3种所以P(B)1P()1.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.16某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示现随机选取一个成员,他属于至少2个小组的概率是,他属于不超过2个小组的概率是.解析:“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”故他属于不超过2个小组的概率是P1.17若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)2a,P(B)4a5,则实数a的取值范围是.解析:由题意可知即解得所以a.