1、第2讲数列的通项与求和问题一、选择题1.已知数列1,3,5,7,则其前n项和Sn为()A.n21 B.n22C.n21 D.n22解析因为an2n1,则Snnn21.答案A2.若数列an的通项公式为an,则其前n项和Sn为()A.1 B.C. D.解析因为an,所以Sna1a2an11.故选D.答案D3.已知a11,an1,则an()A. B.n C. D.解析由an1得:1(常数),又1,是首项为1,公差为1的等差数列,n,an.答案A4.已知数列an的前n项和为Sn,a11,Sn2an1,则Sn()A.2n1 B.C. D.解析由Sn2an1得Sn2(Sn1Sn),即2Sn13Sn,a11
2、,S12a2,a2a1,S2,Sn.答案B5.(2015衡水中学模拟)在数列an中,a12,an1anln,则an()A.2ln n B.2(n1)ln nC.2nln n D.1nln n解析an(anan1)(an1an2)(a2a1)a1ln nln(n1)ln(n1)ln(n2)ln 2ln 122ln n.答案A二、填空题6.(2015江苏卷)设数列an满足a11,且an1ann1(nN*),则数列前10项的和为_.解析a11,an1ann1,a2a12,a3a23,anan1n,将以上n1个式子相加得ana123n,即an,令bn,故bn2,故S10b1b2b102.答案7.若数列
3、an的前n项和Snan,则an的通项公式是an_.解析当n1时,a11;当n2时,anSnSn1anan1,故2,故an(2)n1.答案(2)n18.(2015淄博模拟)数列an满足a1a2an3n1,nN*,则an_.解析当n1时,a1311,所以a112,当n2时,:a1a2an1an3n1:a1a2an13(n1)1.得:an(3n1)3(n1)1,即an3,所以an3n1,综上可得:an答案三、解答题9.已知数列an的前n项和为Sn,首项为a1,且,an,Sn成等差数列,求数列an的通项公式.解,an,Sn成等差数列,2anSn,当n1时,2a1S1,a1,当n2时,Sn2an,Sn1
4、2an1,两式相减得:anSnSn12an2an1,2,数列an是首项为,公比为2的等比数列,an2n12n2.10.(2015安徽卷)已知数列an是递增的等比数列,且a1a49,a2a38.(1)求数列an的通项公式;(2)设Sn为数列an的前n项和,bn,求数列bn的前n项和Tn.解(1)由题设知a1a4a2a38.又a1a49.可解得或(舍去).由a4a1q3得公比q2,故ana1qn12n1.(2)Sn2n1,又bn,所以Tnb1b2bn1.11.(2015福建卷)在等差数列an中,a24,a4a715.(1)求数列an的通项公式;(2)设bn2an2n,求b1b2b3b10的值.解(1)设等差数列an的公差为d,由已知得解得所以ana1(n1)dn2.(2)由(1)可得bn2nn,所以b1b2b3b10(21)(222)(233)(21010)(22223210)(12310)(2112)55211532 101.