1、第3讲分类讨论思想(推荐时间:60分钟)一、填空题1不等式(a2)x22(a2)x40,椭圆x2a2a2y20的长轴长是短轴长的2倍,则a_.8已知等比数列an的前n项和为Sn,若a3,S3,则a1的值为_9若函数ymx2x5在2,)上是增函数,则m的取值范围是_10函数f(x)的定义域为一切实数,则实数m的取值范围是_11若函数f(x)a|xb|2在0,)上为增函数,则实数a、b的取值范围为_12若x(1,2)时,不等式(x1)20,a1)在区间1,1上的最大值是14,求a的值14.已知函数f(x)2asin2x2 asin xcos xab(a0)的定义域是,值域是5,1,求常数a,b的值
2、15已知函数f(x)2x2x,求m、n的值,使f(x)在区间m,n上值域为2m,2n (m0且b0 12(1,213解设tax,则yt22t1.(1)当a1时,因为x1,1,所以t,而yt22t1(t1)22,故在t上,y单调递增,所以ymax(a1)2214,故a3.(2)当0a1时,因为x1,1,所以t,而yt22t1(t1)22,故在t上,y单调递增,所以ymax2214,故a.综上知a3或a.14解f(x)2a(1cos 2x) asin 2xab2a2ab2asin2ab,又0x,2x,sin1.因此,由f(x)的值域为5,1可得或解得或.15解f(x)22.(1)若mn,必有解得或与mn矛盾(2)若mn,必有即两式作差得mn,将其代入式,得2m2m10,70,方程无实根(3)若mn,则必有:2nf,n.又ff,故当m时,也有2m.m,与m矛盾当m时,有f(m)2m.解得m或m0(舍去)综上可知,m,n.高考资源网w w 高 考 资源 网