收藏 分享(赏)

2018高考数学(文)(人教新课标)大一轮复习配套文档:第十章 概率 10-1 随机事件的概率 WORD版含答案.doc

上传人:高**** 文档编号:339115 上传时间:2024-05-27 格式:DOC 页数:9 大小:292KB
下载 相关 举报
2018高考数学(文)(人教新课标)大一轮复习配套文档:第十章 概率 10-1 随机事件的概率 WORD版含答案.doc_第1页
第1页 / 共9页
2018高考数学(文)(人教新课标)大一轮复习配套文档:第十章 概率 10-1 随机事件的概率 WORD版含答案.doc_第2页
第2页 / 共9页
2018高考数学(文)(人教新课标)大一轮复习配套文档:第十章 概率 10-1 随机事件的概率 WORD版含答案.doc_第3页
第3页 / 共9页
2018高考数学(文)(人教新课标)大一轮复习配套文档:第十章 概率 10-1 随机事件的概率 WORD版含答案.doc_第4页
第4页 / 共9页
2018高考数学(文)(人教新课标)大一轮复习配套文档:第十章 概率 10-1 随机事件的概率 WORD版含答案.doc_第5页
第5页 / 共9页
2018高考数学(文)(人教新课标)大一轮复习配套文档:第十章 概率 10-1 随机事件的概率 WORD版含答案.doc_第6页
第6页 / 共9页
2018高考数学(文)(人教新课标)大一轮复习配套文档:第十章 概率 10-1 随机事件的概率 WORD版含答案.doc_第7页
第7页 / 共9页
2018高考数学(文)(人教新课标)大一轮复习配套文档:第十章 概率 10-1 随机事件的概率 WORD版含答案.doc_第8页
第8页 / 共9页
2018高考数学(文)(人教新课标)大一轮复习配套文档:第十章 概率 10-1 随机事件的概率 WORD版含答案.doc_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第十章概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别(2)了解两个互斥事件的概率加法公式2古典概型(1)理解古典概型及其概率计算公式(2)会计算一些随机事件所含的基本事件数及事件发生的概率3随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率(2)了解几何概型的意义101随机事件的概率1随机事件和确定事件(1)在条件S下,一定会发生的事件,叫做相对于条件S的_(2)在条件S下,一定不会发生的事件,叫做相对于条件S的_必然事件与不可能事件统称为相对于一定条件S的确定事件(3)在条件S下可能发生也可能不发生的事件,叫做相对于条件S的_

2、(4)_和_统称为事件,一般用大写字母A,B,C,表示2频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的_,称事件A出现的比例fn(A)_为事件A出现的频率(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的_fn(A)稳定在某个常数上,把这个_记作P(A),称为事件A的_(3)在一次试验中几乎不可能发生的事件称为_3事件的关系与运算(类比集合的关系与运算)定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B_事件A(或称事件A包含于事件B)(或AB)相等关系若BA且AB_并事件(和事件)若某事件发生

3、当且仅当事件A发生_事件B发生,称此事件为事件A与事件B的并事件AB(或AB)交事件(积事件)若某事件发生当且仅当事件A发生_事件B发生,则称此事件为事件A与事件B的交事件AB(或AB)互斥事件若_为不可能事件,则事件A与事件B互斥AB_对立事件若_为不可能事件,_为必然事件,那么称事件A与事件B互为对立事件AB_P(AB)P(A)P(B)_拓展:“互斥事件”与“对立事件”的区别及联系:两个事件A与B是互斥事件,有如下三种情况:若事件A发生,则事件B就不发生;若事件B发生,则事件A就不发生;事件A,B都不发生两个事件A与B是对立事件,仅有前两种情况因此,互斥未必对立,但对立一定互斥4概率的几个

4、基本性质(1)概率的取值范围:_.(2)必然事件的概率P(E)_.(3)不可能事件的概率P(F)_.(4)互斥事件概率的加法公式如果事件A与事件B互斥,则P(AB)_.推广:如果事件A1,A2,An两两互斥(彼此互斥),那么事件A1A2An发生的概率,等于这n个事件分别发生的概率的和,即P(A1A2An)_.若事件B与事件A互为对立事件,则P(A)_.自查自纠1(1)必然事件(2)不可能事件(3)随机事件(4)确定事件随机事件2(1)频数(2)频率常数概率(3)小概率事件3包含BAAB或且ABABAB14(1)0P(A)1(2)1(3)0(4)P(A)P(B)P(A1)P(A2)P(An)1-

5、P(B) ()我国古代数学名著数书九章有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A134石 B169石 C338石 D1 365石解:依题意,这批米内夹谷约为1 534169(石)故选B. 从装有红球和绿球的口袋内任取2个球(已知口袋中的红球、绿球数都大于2),那么互斥而不对立的两个事件是()A至少有一个是红球,至少有一个是绿球B恰有一个红球,恰有两个绿球C至少有一个红球,都是红球D至少有一个红球,都是绿球解:选项A,C中两事件可以同时发生,故不是互斥事件;选项B中两事件不可能同时发生,因此是互斥的,但两

6、事件不对立;选项D中的两事件是对立事件故选B. 若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A. B. C. D.解:事件“甲或乙被录用”的对立事件是“甲和乙都未被录用”,列举易知,从五位学生中选三人的基本事件个数为10,“甲和乙都未被录用”只有1种情况,根据古典概型和对立事件的概率公式可得,甲或乙被录用的概率P1-.故选D. ()从一副混合后的扑克牌(54张)中,随机抽取1张事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率P(AB)_(结果用最简分数表示)解:因为P(A),P(B),所以P(AB)P(A)P(B).故填. 从1,

7、2,3,4,5中任意取出两个不同的数,其和为5的概率是_解:所有可能情形有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种,和为5的情形有(1,4),(2,3)共2种,故所求概率为.故填.类型一随机事件的概念同时掷两颗骰子一次,(1)“点数之和是13”是什么事件?其概率是多少?(2)“点数之和在213之间”是什么事件?其概率是多少?(3)“点数之和是7”是什么事件?其概率是多少?解:(1)由于点数最大是6,和最大是12,不可能得13,故此事件是不可能事件,其概率为0.(2)由于点数之和最小是2,最大是12,在213之

8、间,它是必然事件,其概率为1.(3)由(2)知,和是7是有可能的,此事件是随机事件事件“点数之和是7”包含的基本事件有1,6,2,5,3,4,4,3,5,2,6,1共6个,因此该事件的概率P.【点拨】明确必然事件、不可能事件、随机事件的意义及相互联系判断一个事件是哪类事件要看两点:一是看条件,二是看结果发生与否,在条件S下事件发生与否是对应于条件S而言的一个口袋内装有5个白球和3个黑球,从中任意取出一个球,(1)“取出的球是红球”是什么事件?它的概率是多少?(2)“取出的球是黑球”是什么事件?它的概率是多少?(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?解:(1)由于口袋内装有黑、

9、白两种颜色的球,故“取出的球是红球”是不可能事件,其概率为0.(2)由已知,从口袋内取出一个球,可能是白球,也可能是黑球,故“取出的球是黑球”是随机事件,它的概率是.(3)由于口袋内装的是黑、白两种颜色的球,故取出一个球不是黑球,就是白球,因此,“取出的球是白球或黑球”是必然事件,它的概率为1.类型二对立与互斥的概念判断下列各组事件是否是互斥事件,并说明道理某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中(1)恰有1名男生和恰有2名男生;(2)至少有一名男生和至少有一名女生;(3)至少有一名男生和全是男生;(4)至少有1名男生和全是女生解:(1)是互斥事件道理是:在所选的2名同

10、学中,“恰有1名男生”实质选出的是“一名男生和一名女生”,它与“恰有两名男生”不可能同时发生,所以是一对互斥事件(2)不是互斥事件道理是:“至少有1名男生”包括“1名男生、1名女生”和“两名都是男生”两种结果,“至少有1名女生”包括“1名女生、1名男生”和“两名都是女生”两种结果,它们可能同时发生(3)不是互斥事件道理是:“至少有一名男生”包括“一名男生、一名女生”和“两名都是男生”,这与“全是男生”可同时发生(4)是互斥事件道理是:“至少有1名男生”包括“1名男生、1名女生”和“两名都是男生”两种结果,它和“全是女生”不可能同时发生【点拨】判断两个事件是否为互斥事件,就是考查它们能否同时发生

11、,如果不能同时发生,则是互斥事件,否则,就不是互斥事件判断对立与互斥除了用定义外,也可以利用集合的观点来判断注意:事件的包含、相等、互斥、对立等,其发生的前提条件应是一样的;对立是针对两个事件来说的,而互斥可以是多个事件的关系某地有甲、乙两种报纸供居民订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“一种报纸也不订”判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件(1)A与C;(2)B与D;(3)B与C;(4)C与D.解:(1)由于事件C“至多订一种报纸”中有可能“只订甲报纸”,即事件A与事件C有可能同时发生,故A与C不是互斥事件

12、(2)事件B“至少订一种报纸”与事件D“一种报纸也不订”是不可能同时发生的,故B与D是互斥事件由于事件B不发生可导致事件D一定发生,且事件D不发生会导致事件B一定发生,故B与D还是对立事件(3)事件B“至少订一种报纸”中有这些可能:“只订甲报纸”“只订乙报纸”“订甲、乙两种报纸”,事件C“至多订一种报纸”中有这些可能:“一种报纸也不订”“只订甲报纸”“只订乙报纸”,由于这两个事件可能同时发生,故B与C不是互斥事件(4)由(3)的分析,事件D“一种报纸也不订”是事件C的一种可能,即事件C与事件D有可能同时发生,故C与D不是互斥事件类型三互斥与对立的运用(初步)()经统计,在某储蓄所一个营业窗口等

13、候的人数及相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥(1)记“至多2人排队等候”为事件G,则GABC,所以P(G)P(ABC)P(A)P(B)P(C)0.10.160.30.56.(2)解法一:记“至少3人排队等候”为事件H,则HDEF,所以P(H)P(DEF)P(

14、D)P(E)P(F)0.30.10.040.44.解法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)1-P(G)0.44.【点拨】(1)解决此类问题,首先应根据互斥事件和对立事件的定义分析是不是互斥事件或对立事件,再选择概率公式进行计算(2)求复杂的互斥事件的概率一般有两种方法:直接法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算;间接法,先求此事件的对立事件的概率,再用公式P(A)1-P(A)求解,即用正难则反的数学思想,特别是“至多”“至少”型问题,用间接法往往显得较简便国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战

15、,经过近期训练,某队员射击一次命中710环的概率如下表所示:命中环数10环9环8环7环概率0.320.280.180.12求该射击队员射击一次:(1)命中9环或10环的概率;(2)命中不足8环的概率解:记“射击一次,命中k环”为事件Ak(kN,7k10),则事件Ak彼此互斥(1)记“射击一次,命中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件概率的加法公式得P(A)P(A9)P(A10)0.280.320.60.(2)记“射击一次,至少命中8环”为事件B,则B表示事件“射击一次,命中不足8环”又BA8A9A10,由互斥事件概率的加法公式得P(B)P(A8)P(A9

16、)P(A10)0.180.280.320.78.故P(B)1-P(B)1-0.780.22.因此,射击一次,命中不足8环的概率为0.22.1概率与频率的关系(1)频率是一个随机数,在试验前是不能确定的(2)概率是一个确定数,是客观存在的,与试验次数无关(3)频率是概率的近似值,随着试验次数的增加,频率一般会越来越接近概率,因而概率是频率的稳定值2互斥事件、对立事件的判定方法(1)利用基本概念互斥事件是两个不可能同时发生的事件;对立事件首先是互斥事件,且必有一个发生(2)利用集合的观点来判断设事件A与B所含的结果组成的集合分别是A,B,事件A与B互斥,即集合AB;事件A与B对立,即集合AB,且A

17、BI(全集),也即AIB或BIA;对互斥事件A与B的和AB,可理解为集合AB.3求复杂互斥事件概率的方法一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式P(A)1-P(A),即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便1给出下列事件:同学甲竞选班长成功;两队比赛,强队胜利;一所学校共有998名学生,至少有三名学生的生日相同;若集合A,B,C满足AB,BC,则AC;古代有一个国王

18、想处死一位画师,背地里在2张签上都写了“死”字,再让画师抽“生死签”,画师抽到死签;七月天下雪;从1,3,9中任选两数相加,其和为偶数;骑车通过10个十字路口,均遇红灯其中属于随机事件的有()A3个 B4个 C5个 D6个解:为随机事件故选B.2在一次随机试验中,彼此互斥的事件A,B,C,D发生的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是()AAB与C是互斥事件,也是对立事件BBC与D是互斥事件,也是对立事件CAC与BD是互斥事件,但不是对立事件DA与BCD是互斥事件,也是对立事件解:由于A,B,C,D彼此互斥,且ABCD是一个必然事件,故其事件的关系可由如图所示的Venn图

19、表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件故选D.3()甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A. B. C. D.解:甲不输的概率为.故选A.4()5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中一次随机抽取2张,则取出的2张卡片上数字之和为偶数的概率为()A. B. C. D.解:抽取的所有可能结果为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种和为偶数的有(1,3),(1,5),(3,5

20、),(2,4),共4种,故所求为.故选B.5在平面直角坐标系xOy中,不等式组表示的平面区域为W,从W中随机取点M(x,y)若xZ,yZ,则点M位于第二象限的概率为()A. B. C.1- D.1-解:画出平面区域,列出平面区域内的整数点如下:(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共12个,其中位于第二象限的有(-1,1),(-1,2),共2个,所以所求概率P.故选A.6若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)2-a,P(B)4a-5,则实数a的取值范围是()A. B.C. D.解:由题意可知P(A2),所以甲应选择L1.同理,P(B1)0.10.20.30.20.8,P(B2)0.10.40.40.9,因为P(B1)P(B2),所以乙应选择L2. 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率是,试求:从中任取一球,得到黑球、黄球、绿球的概率各是多少?解:从中任取一球,分别记得到红球、黑球、黄球、绿球为事件A,B,C,D.由于A,B,C,D为互斥事件,根据已知得解得所以从中任取一球,得到黑球、黄球、绿球的概率分别是,.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3